dyconnmap

A dynamic connectome mapping module in python.

https://github.com/makism/dyconnmap

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 13 DOI reference(s) in README
  • Academic publication links
    Links to: researchgate.net, wiley.com
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.4%) to scientific vocabulary

Keywords

clustering connectivity connectome dynamic eeg fc-states fmri functional-connectivity graph-analysis graph-distances graphs meg neuroimaging neuroscience python time-varying
Last synced: 6 months ago · JSON representation ·

Repository

A dynamic connectome mapping module in python.

Basic Info
  • Host: GitHub
  • Owner: makism
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 105 MB
Statistics
  • Stars: 106
  • Watchers: 8
  • Forks: 31
  • Open Issues: 5
  • Releases: 5
Topics
clustering connectivity connectome dynamic eeg fc-states fmri functional-connectivity graph-analysis graph-distances graphs meg neuroimaging neuroscience python time-varying
Created over 8 years ago · Last pushed over 2 years ago
Metadata Files
Readme Changelog Contributing License Citation

README.md

dyconnmap

A neuroimaging module for dynamic connectome mapping.

build & code
[![Build Status](https://travis-ci.org/makism/dyconnmap.svg?branch=master)](https://travis-ci.org/makism/dyconnmap) [![Coverage Status](https://coveralls.io/repos/github/makism/dyconnmap/badge.svg?branch=master)](https://coveralls.io/github/makism/dyconnmap?branch=master) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/10f434822c3a4bdb89dd0bf43f524970)](https://www.codacy.com/gh/makism/dyconnmap/dashboard?utm_source=github.com&utm_medium=referral&utm_content=makism/dyconnmap&utm_campaign=Badge_Grade)
package
[![PyPI version](https://badge.fury.io/py/dyconnmap.svg)](https://badge.fury.io/py/dyconnmap) [![Anaconda-Server Badge](https://anaconda.org/makism/dyconnmap/badges/version.svg)](https://anaconda.org/makism/dyconnmap) ![Whenenver a new tag is pushed; a wheel distribution is uploaded on the Test PyPI index.](https://github.com/makism/dyconnmap/workflows/publish-test-pypi/badge.svg) [![Libraries.io dependency status for latest release](https://img.shields.io/librariesio/release/pypi/dyconnmap)](https://libraries.io/github/makism/dyconnmap) [![Downloads](https://pepy.tech/badge/dyconnmap)](https://pepy.tech/project/dyconnmap)
release
![python-versions](https://img.shields.io/pypi/pyversions/dyconnmap) [![Licence](https://img.shields.io/badge/Licence-BSD-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) [![Documentation Status](https://readthedocs.org/projects/dyconnmap/badge/?version=latest)](https://dyconnmap.readthedocs.io/?badge=latest)
tutorials
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/makism/dyconnmap/master?filepath=tutorials)
social & updates
[![RG](https://img.shields.io/badge/RG%20Project-Python%20tools%20for%20Brain%20Network%20Analysis-%2300ccbb)](https://www.researchgate.net/project/Python-tools-for-Brain-Network-Analysis)

dyconnmap (abbreviated from “dynamic connectome mapping”), a neuroimaging python module specifically designed for estimating the dynamic connectivity and analyzing complex brain networks; from neurophysiological data such as electroencephalogram (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) recordings. It includes numerous submodules to work with, such as chronnectomics and graph-theoretical algorithms, (symbolic) time series and statistical methods.

This is an ongoing effort to develop the module further and extend it by adding more algorithms related to graph analysis and statistical approaches. Considering the increasing acceptance and usage of python in analyzing neuroimaging data, we firmly believe that the module will be a great addition in every practitioner's toolbox engaged in brain connectivity analysis.

Built on NumPy, SciPy, matplotlib and networkx.

Workflow outline

workflow

Publications

Resources

Citation

If you use dyconnmap or dyfunconn in a published work, please consider citing.

1. Marimpis, A. D., Dimitriadis, S. I., & Goebel, R. (2021). Dyconnmap: Dynamic connectome mapping—A neuroimaging python module. Human Brain Mapping, 42( 15), 4909– 4939. https://doi.org/10.1002/hbm.25589
2. Marimpis, A. D., & Dimitriadis, S. I. (2017). dyfunncon: dynamic functional connectivity–a neuroimaging Python module. F1000Research, 6. https://doi.org/10.7490/f1000research.1114652.1

Sponsors

Nov 2017 - Apr 2021 Brain Innovation B.V.
Sept 2017 BRAINTRAIN (Taking imaging into the therapeutic domain: Self-regulation of brain systems for mental disorders) research project (FP7-HEALTH).

Owner

  • Name: Avraam "Makis" Marimpis
  • Login: makism
  • Kind: user
  • Location: Berlin, Germany

code is law.

Citation (CITATION.cff)

cff-version: 1.2.0
title: >-
  Dyconnmap: Dynamic connectome mapping—A
  neuroimaging python module
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Avraam
    email: avraam.marimpis@maastrichtuniversity.nl
    orcid: 'https://orcid.org/0000-0003-1551-9940'
    family-names: Marimpis
  - orcid: 'https://orcid.org/0000-0002-0000-5392'
    given-names: Stavros
    family-names: Dimitriadis
  - given-names: Rainer
    family-names: Goebel
    orcid: 'https://orcid.org/0000-0003-1780-2467'

GitHub Events

Total
  • Watch event: 5
Last Year
  • Watch event: 5

Committers

Last synced: 11 months ago

All Time
  • Total Commits: 578
  • Total Committers: 4
  • Avg Commits per committer: 144.5
  • Development Distribution Score (DDS): 0.054
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
makis marimpis m****m@g****m 547
dependabot-preview[bot] 2****] 27
Marijn van Vliet w****t@g****m 2
Avraam Marimpis m****s@b****m 2
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 16
  • Total pull requests: 86
  • Average time to close issues: 5 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 12
  • Total pull request authors: 5
  • Average comments per issue: 1.88
  • Average comments per pull request: 2.41
  • Merged pull requests: 37
  • Bot issues: 0
  • Bot pull requests: 74
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • makism (3)
  • danielegrattarola (2)
  • wmvanvliet (2)
  • Baby-Baby (1)
  • devmessias (1)
  • akatav (1)
  • damienstanton (1)
  • vincent5290 (1)
  • JoffJones (1)
  • balandongiv (1)
  • Saqibm128 (1)
  • albertleemon (1)
Pull Request Authors
  • dependabot-preview[bot] (60)
  • dependabot[bot] (14)
  • makism (10)
  • Saqibm128 (1)
  • wmvanvliet (1)
Top Labels
Issue Labels
invalid (2) docs (1) enhancement (1) feature-request (1)
Pull Request Labels
dependencies (74) merge-ready (4)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 10 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 4
  • Total maintainers: 1
pypi.org: dyconnmap

A dynamic connectome mapping module in Python

  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 10 Last month
Rankings
Forks count: 7.1%
Stargazers count: 7.3%
Dependent packages count: 10.1%
Average: 15.3%
Dependent repos count: 21.6%
Downloads: 30.6%
Maintainers (1)
Last synced: 6 months ago

Dependencies

environment.yml conda
  • jupyterlab
  • pip
  • pyedflib 0.1.14
  • python 3.6.*
  • tqdm
package.json npm
  • codacy-coverage development
  • codecov development
  • coverage development
  • nose ^1.3.7 development
  • python-coveralls development
  • bctpy ^0.5.0
  • matplotlib ^2.0.2
  • networkx ^2.0
  • numpy ^1.13.1
  • scikit-learn ^0.19.0
  • scipy ^0.19.1
  • statsmodels ^0.8.0
requirements.txt pypi
  • Sphinx >=3.0.4
  • bctpy >=0.5.0
  • codacy-coverage *
  • codecov *
  • coverage *
  • coveralls *
  • data-science-types *
  • matplotlib >=3.3.0
  • mypy *
  • networkx >=2.5
  • numpy >=1.19.0
  • pytest *
  • pytest-cov *
  • scikit-learn >=0.24.0
  • scipy >=1.6.0
  • scipy ==1.5.2
  • sphinx-rtd-theme ==0.5.1
  • statsmodels >=0.12.0
  • tox *
  • tox-conda *
setup.py pypi
  • bctpy *
  • matplotlib *
  • networkx *
  • numpy *
  • scikit-learn *
  • scipy *
  • statsmodels *