irl-imitation
Implementation of Inverse Reinforcement Learning (IRL) algorithms in Python/Tensorflow. Deep MaxEnt, MaxEnt, LPIRL
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 4 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, zenodo.org -
✓Committers with academic emails
1 of 2 committers (50.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.5%) to scientific vocabulary
Keywords
Repository
Implementation of Inverse Reinforcement Learning (IRL) algorithms in Python/Tensorflow. Deep MaxEnt, MaxEnt, LPIRL
Statistics
- Stars: 625
- Watchers: 30
- Forks: 150
- Open Issues: 4
- Releases: 1
Topics
Metadata Files
README.md
irl-imitation
Implementation of selected Inverse Reinforcement Learning (IRL) algorithms in Python/Tensorflow.
bash
$ python demo.py

Implemented Algorithms
- Linear inverse reinforcement learning (Ng & Russell, 2000)
- Maximum entropy inverse reinforcement learning (Ziebart et al., 2008)
- Maximum entropy deep inverse reinforcement learning (Wulfmeier et al., 2015)
Implemented MDPs & Solver
- 2D gridworld
- 1D gridworld
- Value iteration
If you use this software in your publications, please cite it using the following BibTeX entry:
bibtex
@misc{lu2017irl-imitation,
author = {Lu, Yiren},
doi = {10.5281/zenodo.6796157},
month = {7},
title = {{Implementations of inverse reinforcement learning algorithms in Python/Tensorflow}},
url = {https://github.com/yrlu/irl-imitation},
year = {2017}
}
Dependencies
- python 2.7
- cvxopt
- Tensorflow 0.12.1
- matplotlib
Linear Inverse Reinforcement Learning
- Following Ng & Russell 2000 paper: Algorithms for Inverse Reinforcement Learning, algorithm 1
bash
$ python linear_irl_gridworld.py --act_random=0.3 --gamma=0.5 --l1=10 --r_max=10
Maximum Entropy Inverse Reinforcement Learning
(This implementation is largely influenced by Matthew Alger's maxent implementation)
- Following Ziebart et al. 2008 paper: Maximum Entropy Inverse Reinforcement Learning
$ python maxent_irl_gridworld.py --helpfor options descriptions
bash
$ python maxent_irl_gridworld.py --height=10 --width=10 --gamma=0.8 --n_trajs=100 --l_traj=50 --no-rand_start --learning_rate=0.01 --n_iters=20
bash
$ python maxent_irl_gridworld.py --gamma=0.8 --n_trajs=400 --l_traj=50 --rand_start --learning_rate=0.01 --n_iters=20

Maximum Entropy Deep Inverse Reinforcement Learning
- Following Wulfmeier et al. 2015 paper: Maximum Entropy Deep Inverse Reinforcement Learning. FC version implemented. The implementation does not follow exactly the model proposed in the paper. Some tweaks applied including elu activations, clipping gradients, l2 regularization etc.
$ python deep_maxent_irl_gridworld.py --helpfor options descriptions
bash
$ python deep_maxent_irl_gridworld.py --learning_rate=0.02 --n_trajs=200 --n_iters=20

MIT License
Owner
- Name: Yiren Lu
- Login: yrlu
- Kind: user
- Location: New York
- Company: Waymo Research
- Twitter: luyirenmax
- Repositories: 17
- Profile: https://github.com/yrlu
M.S.E. in Robotics '17, GRASP Lab, UPenn
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Lu" given-names: "Yiren" orcid: "https://orcid.org/0000-0002-7924-2488" title: "yrlu/irl-imitation: Implementation of Inverse Reinforcement Learning (IRL) algorithms in python/Tensorflow" version: 1.0.0 doi: 10.5281/zenodo.6796157 date-released: 2017-07-01 url: "https://github.com/yrlu/irl-imitation"
GitHub Events
Total
- Watch event: 56
- Fork event: 4
Last Year
- Watch event: 56
- Fork event: 4
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Max Lu | l****n@s****u | 41 |
| Yiren Lu | l****x@g****m | 4 |