rempsyc
rempsyc: Convenience functions for psychology - Published in JOSS (2023)
Science Score: 100.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 4 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
2 of 7 committers (28.6%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
convenience-functions
ggplot2
psychology
r
rstats
statistics
visualization
Keywords from Contributors
correlation
lavaan
structural-equation-modeling
easystats
Last synced: 4 months ago
·
JSON representation
·
Repository
Package of convenience functions to make your workflow faster and easier. Easily customizable plots (via ggplot2), nice APA tables exportable to Word (via flextable), easily run statistical tests or check assumptions, and automatize various other tasks.
Basic Info
- Host: GitHub
- Owner: rempsyc
- License: gpl-3.0
- Language: R
- Default Branch: main
- Homepage: https://rempsyc.remi-theriault.com/
- Size: 626 MB
Statistics
- Stars: 48
- Watchers: 2
- Forks: 5
- Open Issues: 6
- Releases: 11
Topics
convenience-functions
ggplot2
psychology
r
rstats
statistics
visualization
Created almost 4 years ago
· Last pushed 4 months ago
Metadata Files
Readme
Changelog
Contributing
Funding
License
Citation
README.Rmd
---
output:
github_document
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# rempsyc: Convenience functions for psychology
```{r version, echo = FALSE, message = FALSE, warning = FALSE}
flextable::set_flextable_defaults(background.color = "white")
options(scipen = 999)
library(rempsyc)
```
[](https://github.com/rempsyc/rempsyc/actions)
[](https://cran.r-project.org/package=rempsyc)
[](https://rempsyc.r-universe.dev/rempsyc)
[](https://github.com/rempsyc/rempsyc/commits/main)
[](https://lifecycle.r-lib.org/articles/stages.html)
[](https://hadley.shinyapps.io/cran-downloads/)
[](https://hadley.shinyapps.io/cran-downloads/)
[](https://doi.org/10.21105/joss.05466)
[](https://github.com/sponsors/rempsyc)
[](https://github.com/rempsyc?tab=followers)
[](https://github.com/rempsyc/rempsyc/stargazers)
R package of convenience functions to make your workflow faster and easier. Easily customizable plots (via `ggplot2`), nice APA tables exportable to Word (via `flextable`), easily run statistical tests or check assumptions, and automatize various other tasks. Mostly geared at researchers in the psychological sciences. The package is still under active development. Feel free to open an issue to ask for help, report a bug, or request a feature.
- [Release notes](https://rempsyc.remi-theriault.com/news/index.html)
- [Development objectives (to-do list)](https://rempsyc.remi-theriault.com/TODOS.html)
Top 40 new CRAN packages (2022)!
> *This is one of the most helpful R packages I've used in years! It saves hours of time and patience and is super easy to implement!* - Mark ([more testimonials](https://rempsyc.remi-theriault.com/articles/featured.html#testimonials))
## Installation
You can install the `rempsyc` package directly from CRAN:
``` r
install.packages("rempsyc")
```
Or the development version from the r-universe (note that there is a 24-hour delay with GitHub):
``` r
install.packages("rempsyc", repos = c(
rempsyc = "https://rempsyc.r-universe.dev",
CRAN = "https://cloud.r-project.org"))
```
Or from GitHub, for the very latest version:
``` r
# If package `remotes` isn't already installed, install it with `install.packages("remotes")`
remotes::install_github("rempsyc/rempsyc")
```
You can load the package and open the help file, and click "Index" at the bottom. You will see all the available functions listed.
``` r
library(rempsyc)
?rempsyc
```
**Dependencies:** Because `rempsyc` is a package of convenience functions relying on several external packages, it uses (inspired by the [`easystats`](https://easystats.github.io/easystats/) packages) a minimalist philosophy of only installing packages that you need when you need them through `rlang::check_installed()`. Should you wish to specifically install all suggested dependencies at once (you can view the full list by clicking on the CRAN badge on this page), you can run the following (be warned that this may take a long time, as some of the suggested packages are only used in the vignettes or examples):
``` r
install.packages("rempsyc", dependencies = TRUE)
```
## Overview
```{r headers, results = "asis", echo = FALSE}
section.1 <- "Nice APA tables"
section.2 <- "T-tests, planned contrasts, regressions, moderations, simple slopes"
section.3 <- "Visualization"
section.4 <- "Utility functions"
section.5 <- "Testing assumptions"
section.6 <- "lavaanExtra"
cute_cat <- function(x, header.level = 1) {
cat(rep("#", header.level), " ", x, sep = "")
}
cute_TOC <- function(section) {
cat("[", section, "]",
"(#", tolower(gsub(" ", "-", gsub(",", "", section))), ")",
"",
"\n \n",
sep = ""
)
}
invisible(lapply(
list(
section.1, section.2, section.3, section.4, section.5, section.6
),
cute_TOC
))
```
## Nice APA tables
## `nice_table`
Make nice APA tables easily through a wrapper around the `flextable` package with sensical defaults and automatic formatting features.
The tables can be opened in Word with `print(table, preview ="docx")`, or saved to Word with the `flextable::save_as_docx` function, and are `flextable` objects, and can be modified as such. The function also integrates with objects from the `broom` and `report` packages. Full tutorial: https://rempsyc.remi-theriault.com/articles/table
Note: For a smoother and more integrated presentation flow, this function is now featured along the other functions.
## T-tests, planned contrasts, regressions, moderations, simple slopes
## `nice_t_test`
Easily compute t-test analyses, with effect sizes, and format in publication-ready format. Supports multiple dependent variables at once. The 95% confidence interval is for the effect size (Cohen's d).
```{r nice_t_test, warning = FALSE, message = FALSE}
library(rempsyc)
t.tests <- nice_t_test(
data = mtcars,
response = c("mpg", "disp", "drat", "wt"),
group = "am"
)
t.tests
```
```{r nice_table, results='hide'}
# Format t-test results
t_table <- nice_table(t.tests)
t_table
```
```{r save_as_image, include=FALSE}
table_temp <- flextable::autofit(t_table)
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_t_test-1.png",
expand = 0, res = 300
)
```
```{r table_save, warning = FALSE, message = FALSE, eval = FALSE}
# Open in Word for quick copy-pasting
print(my_table, preview = "docx")
# Or save to Word
flextable::save_as_docx(t_table, path = "D:/R treasures/t_tests.docx")
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/t-test
## `nice_contrasts `
Easily compute regression with planned contrast analyses (pairwise comparisons similar to t-tests but more powerful when more than 2 groups), and format in publication-ready format. Supports multiple dependent variables at once (but supports only three groups for the moment). In this particular case, the confidence intervals are bootstraped around the Cohen's d.
```{r set.seed, include=FALSE}
set.seed(100)
```
```{r nice_contrasts, warning = FALSE, message = FALSE}
contrasts <- nice_contrasts(
data = mtcars,
response = c("mpg", "disp"),
group = "cyl",
covariates = "hp"
)
contrasts
```
```{r, results="hide"}
# Format contrasts results
nice_table(contrasts, highlight = .001)
```
```{r, include=FALSE}
table_temp <- contrasts |>
nice_table(highlight = .001) |>
flextable::autofit()
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_contrasts-1.png",
expand = 0, res = 300
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/contrasts
## `nice_mod`
Easily compute moderation analyses, with effect sizes, and format in publication-ready format. Supports multiple dependent variables and covariates at once.
```{r nice_mod, warning = FALSE, message = FALSE}
moderations <- nice_mod(
data = mtcars,
response = c("mpg", "disp"),
predictor = "gear",
moderator = "wt"
)
moderations
```
```{r, results="hide"}
# Format moderation results
nice_table(moderations, highlight = TRUE)
```
```{r, include=FALSE}
table_temp <- moderations |>
nice_table(highlight = TRUE) |>
flextable::autofit()
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_mod-1.png",
expand = 0, res = 300
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/moderation
## `nice_lm`
For more complicated models not supported by `nice_mod`, one can define the model in the traditional way and feed it to `nice_lm` instead. Supports multiple `lm` models as well.
```{r nice_lm, warning = FALSE, message = FALSE}
model1 <- lm(mpg ~ cyl + wt * hp, mtcars)
model2 <- lm(qsec ~ disp + drat * carb, mtcars)
mods <- nice_lm(list(model1, model2), standardize = TRUE)
mods
```
```{r, results="hide"}
# Format moderation results
nice_table(mods, highlight = TRUE)
```
```{r, include=FALSE}
table_temp <- mods |>
nice_table(highlight = TRUE) |>
flextable::autofit()
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_lm-1.png",
expand = 0, res = 300
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/moderation
## `nice_slopes`
Easily compute simple slopes in moderation analysis, with effect sizes, and format in publication-ready format. Supports multiple dependent variables and covariates at once.
```{r nice_slopes, warning = FALSE, message = FALSE}
simple.slopes <- nice_slopes(
data = mtcars,
response = c("mpg", "disp"),
predictor = "gear",
moderator = "wt"
)
simple.slopes
```
```{r, results="hide"}
# Format simple slopes results
nice_table(simple.slopes)
```
```{r, include=FALSE}
table_temp <- simple.slopes |>
nice_table() |>
flextable::autofit()
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_slopes-1.png",
expand = 0, res = 300
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/moderation
## `nice_lm_slopes`
For more complicated models not supported by `nice_slopes`, one can define the model in the traditional way and feed it to `nice_lm_slopes` instead. Supports multiple `lm` models as well, but the predictor and moderator need to be the same for these models (the dependent variable can change).
```{r nice_lm_slopes, warning = FALSE, message = FALSE}
model1 <- lm(mpg ~ gear * wt, mtcars)
model2 <- lm(disp ~ gear * wt, mtcars)
my.models <- list(model1, model2)
simple.slopes <- nice_lm_slopes(my.models, predictor = "gear", moderator = "wt", standardize = TRUE)
simple.slopes
```
```{r, results="hide"}
# Format simple slopes results
nice_table(simple.slopes)
```
```{r, include=FALSE}
table_temp <- simple.slopes |>
nice_table() |>
flextable::autofit()
flextable::save_as_image(table_temp,
path = "man/figures/README-nice_lm_slopes-1.png",
expand = 0, res = 300
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/moderation
## Visualization
All plots can be saved with the `ggplot2::ggsave()` function. They are `ggplot2` objects so can be modified as such.
## `nice_violin`
Make nice violin plots easily with 95% bootstrapped confidence intervals.
```{r nice_violin, warning = FALSE, message = FALSE, fig.width=8, fig.height=7, out.width="60%"}
nice_violin(
data = ToothGrowth,
group = "dose",
response = "len",
xlabels = c("Low", "Medium", "High"),
comp1 = 1,
comp2 = 3,
has.d = TRUE,
d.y = 30
)
```
```{r, eval = FALSE}
# Save plot
ggplot2::ggsave("niceplot.pdf",
width = 7, height = 7, unit = "in",
dpi = 300, path = "D:/R treasures/"
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/violin
## `nice_scatter`
Make nice scatter plots easily.
```{r nice_scatter, warning = FALSE, message = FALSE, fig.width=8, fig.height=7, out.width="60%"}
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
has.confband = TRUE,
has.r = TRUE,
has.p = TRUE
)
```
```{r nice_scatter2, warning = FALSE, message = FALSE, fig.width=10, fig.height=7, out.width="70%"}
nice_scatter(
data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.confband = TRUE
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/scatter
## `plot_means_over_time`
Make nice plots of means over time, usually for randomized controlled trials with several groups over several time measurements. Error bars represent 95% confidence intervals adjusted for within-subject variance as by the method of Morey (2008).
```{r plot_means_over_time, warning = FALSE, message = FALSE, fig.width=9, fig.height=5, out.width="70%"}
data <- mtcars
names(data)[6:3] <- paste0("T", 1:4, "_some-time-variable")
plot_means_over_time(
data = data,
response = names(data)[6:3],
group = "cyl",
groups.order = "decreasing",
significance_bars_x = c(3.15, 4.15),
significance_stars = c("*", "***"),
significance_stars_x = c(3.25, 4.35),
# significance_stars_y: List with structure: list(c("group1", "group2", time))
significance_stars_y = list(
c("4", "8", time = 3),
c("4", "8", time = 4)
)
)
```
## `grouped_bar_chart`
Make nice plots of means over time, usually for randomized controlled trials with several groups over several time measurements. Error bars represent 95% confidence intervals adjusted for within-subject variance as by the method of Morey (2008).
```{r grouped_bar_chart, warning = FALSE, message = FALSE, out.width="70%"}
iris2 <- iris
iris2$plant <- c(
rep("yes", 45),
rep("no", 45),
rep("maybe", 30),
rep("NA", 30)
)
grouped_bar_chart(
data = iris2,
response = "plant",
group = "Species"
)
```
## `overlap_circle `
Interpolating the Inclusion of the Other in the Self Scale (self-other merging) easily.
```{r overlap_circle, warning = FALSE, message = FALSE, fig.width=7, fig.height=7, out.width="30%"}
# Score of 3.5 (25% overlap)
overlap_circle(3.5)
# Score of 6.84 (81.8% overlap)
overlap_circle(6.84)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/circles
## `cormatrix_excel`
Easily output a correlation matrix and export it to Microsoft Excel, with the first row and column frozen, and correlation coefficients colour-coded based on their effect size (0.0-0.2: small (pink/light blue); 0.2-0.4: medium (orange/blue); 0.4-1.0: large (red/dark blue)).
```{r cormatrix_excel2, warning = FALSE}
cormatrix_excel(
data = infert,
filename = "cormatrix1",
select = c(
"age", "parity", "induced", "case", "spontaneous",
"stratum", "pooled.stratum"
)
)
```
```{r cormatrix_excel_remove, include = FALSE}
unlink("cormatrix1.xlsx")
```
## Utility functions
## `nice_na`
Nicely reports NA values according to existing guidelines (i.e, reporting absolute or percentage of item-based missing values, plus each scale's maximum amount of missing values for a given participant). Accordingly, allows specifying a list of columns representing questionnaire items to produce a questionnaire-based report of missing values.
```{r}
# Create synthetic data frame for the demonstration
set.seed(50)
df <- data.frame(
scale1_Q1 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale1_Q2 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale1_Q3 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale2_Q1 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale2_Q2 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale2_Q3 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale3_Q1 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale3_Q2 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA),
scale3_Q3 = c(sample(c(NA, 1:6), replace = TRUE), NA, NA)
)
# Then select your scales by name
nice_na(df, scales = c("scale1", "scale2", "scale3"))
# Or whole dataframe
nice_na(df)
```
## `extract_duplicates`
Extracts ALL duplicates (including the first one, contrary to `duplicated` or `dplyr::distinct`) to a data frame for visual inspection.
```{r, extract_duplicates}
df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)
)
df1
extract_duplicates(df1, id = "id")
```
## `best_duplicate`
Extracts the "best" duplicate: the one with the fewer number of missing values (in case of ties, picks the first one).
```{r, best_duplicate}
best_duplicate(df1, id = "id")
```
## `scale_mad`
Scale and center ("standardize") data based on the median and median absolute deviation (MAD).
```{r, scale_mad}
scale_mad(mtcars$mpg)
```
## `find_mad`
Identify outliers based on (e.g.,) 3 median absolute deviations (MAD) from the median.
```{r, find_mad}
find_mad(data = mtcars, col.list = names(mtcars)[c(1:7, 10:11)], criteria = 3)
```
## `winsorize_mad`
Winsorize outliers based on (e.g.,) 3 median absolute deviations (MAD).
```{r, winsorize_mad}
winsorize_mad(mtcars$qsec, criteria = 3)
```
## `nice_reverse`
Easily recode scores (reverse-score), typically for questionnaire answers.
```{r nice_reverse, warning = FALSE, message = FALSE}
# Reverse score of 5 with a maximum score of 5
nice_reverse(5, 5)
# Reverse scores with maximum = 4 and minimum = 0
nice_reverse(1:4, 4, min = 0)
# Reverse scores with maximum = 3 and minimum = -3
nice_reverse(-3:3, 3, min = -3)
```
## `format_value`
Easily format *p* or *r* values. Note: converts to `character` class for use in figures or manuscripts to accommodate e.g., "< .001".
```{r format_value, warning = FALSE, message = FALSE}
format_p(0.0041231)
format_p(t.tests$p)
format_r(moderations$sr2)
format_d(t.tests$d)
```
## `nice_randomize`
Randomize easily with different designs.
```{r nice_randomize, warning = FALSE, message = FALSE}
# Specify design, number of conditions, number of participants, and names of conditions:
nice_randomize(
design = "between", Ncondition = 4, n = 8,
condition.names = c("BP", "CX", "PZ", "ZL")
)
# Within-Group Design
nice_randomize(
design = "within", Ncondition = 3, n = 3,
condition.names = c("SV", "AV", "ST")
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/randomize
## Testing assumptions
## `nice_assumptions `
Test linear regression assumptions easily with a nice summary table.
```{r nice_assumptions, eval = FALSE, warning = FALSE, message = FALSE}
# Create regression model
model <- lm(mpg ~ wt * cyl + gear, data = mtcars)
# View results
View(nice_assumptions(model))
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/assumptions
## `nice_normality `
Easily make nice density and QQ plots per-group.
```{r nice_normality, warning = FALSE, message = FALSE, fig.width=16, fig.height=7, out.width="80%"}
nice_normality(
data = iris,
variable = "Sepal.Length",
group = "Species",
grid = FALSE,
shapiro = TRUE,
histogram = TRUE
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/assumptions
## `plot_outliers`
Visually check outliers based on (e.g.) +/- 3 MAD (median absolute deviations) or SD (standard deviations).
```{r plot_outliers, warning = FALSE, message = FALSE, fig.width=8, fig.height=7, out.width="70%"}
plot_outliers(airquality,
group = "Month",
response = "Ozone"
)
plot_outliers(airquality,
response = "Ozone",
method = "sd"
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/assumptions
## `nice_var `
Obtain variance per group as well as check for the rule of thumb of one group having variance four times bigger than any of the other groups.
```{r nice_var, warning = FALSE, message = FALSE}
nice_var(
data = iris,
variable = "Sepal.Length",
group = "Species"
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/assumptions
## `nice_varplot`
Attempt to visualize variance per group.
```{r nice_varplot, warning = FALSE, message = FALSE, fig.width=8, fig.height=7, out.width="70%"}
nice_varplot(
data = iris,
variable = "Sepal.Length",
group = "Species"
)
```
Full tutorial: https://rempsyc.remi-theriault.com/articles/assumptions
## `lavaanExtra`
For an alternative, vector-based syntax to `lavaan` (a latent variable analysis/structural equation modeling package), as well as other convenience functions such as naming paths and defining indirect links automatically, see my other package, `lavaanExtra`.
https://lavaanExtra.remi-theriault.com/
## Support me and this package
Thank you for your support. You can support me and this package here: https://github.com/sponsors/rempsyc
Owner
- Name: Rémi Thériault
- Login: rempsyc
- Kind: user
- Location: New York, NY
- Company: New York University
- Website: https://remi-theriault.com/
- Twitter: rempsyc
- Repositories: 36
- Profile: https://github.com/rempsyc
Postdoc @ Center for Conflict and Cooperation NYU New York University
JOSS Publication
rempsyc: Convenience functions for psychology
Published
July 25, 2023
Volume 8, Issue 87, Page 5466
Tags
psychology statistics visualizationCitation (CITATION.cff)
cff-version: "1.2.0"
authors:
- family-names: Thériault
given-names: Rémi
orcid: "https://orcid.org/0000-0003-4315-6788"
doi: 10.5281/zenodo.8169295
message: If you use this software, please cite our article in the
Journal of Open Source Software.
preferred-citation:
authors:
- family-names: Thériault
given-names: Rémi
orcid: "https://orcid.org/0000-0003-4315-6788"
date-published: 2023-07-25
doi: 10.21105/joss.05466
issn: 2475-9066
issue: 87
journal: Journal of Open Source Software
publisher:
name: Open Journals
start: 5466
title: "rempsyc: Convenience functions for psychology"
type: article
url: "https://joss.theoj.org/papers/10.21105/joss.05466"
volume: 8
title: "rempsyc: Convenience functions for psychology"
GitHub Events
Total
- Create event: 9
- Release event: 1
- Issues event: 21
- Watch event: 4
- Delete event: 7
- Issue comment event: 43
- Push event: 80
- Pull request review event: 3
- Pull request review comment event: 2
- Pull request event: 22
- Fork event: 4
Last Year
- Create event: 9
- Release event: 1
- Issues event: 21
- Watch event: 4
- Delete event: 7
- Issue comment event: 43
- Push event: 80
- Pull request review event: 3
- Pull request review comment event: 2
- Pull request event: 22
- Fork event: 4
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| rempsyc | r****t@m****a | 541 |
| RemPsyc | R****c | 239 |
| GitHub Actions | a****s@g****m | 2 |
| olivroy | 5****y | 1 |
| Sebastian Jeworutzki | S****i@r****e | 1 |
| Jan Marvin Garbuszus | j****s@r****e | 1 |
| Buedenbender | 3****r | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 35
- Total pull requests: 19
- Average time to close issues: 18 days
- Average time to close pull requests: about 13 hours
- Total issue authors: 19
- Total pull request authors: 6
- Average comments per issue: 2.31
- Average comments per pull request: 2.95
- Merged pull requests: 10
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 15
- Pull requests: 15
- Average time to close issues: 19 days
- Average time to close pull requests: about 11 hours
- Issue authors: 4
- Pull request authors: 2
- Average comments per issue: 0.27
- Average comments per pull request: 2.87
- Merged pull requests: 7
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- rempsyc (15)
- philpav (2)
- missshellfire (1)
- David-Saeteros (1)
- TomTrebs (1)
- jjeemmiimmaa (1)
- seglima (1)
- kinleyid (1)
- PatricioSolis-Urra (1)
- keithmeplz (1)
- mayazadok2 (1)
- markgibson9 (1)
- pavloszk96 (1)
- etiennebacher (1)
- TinaYibingChen (1)
Pull Request Authors
- Copilot (13)
- JanMarvin (2)
- sjewo (1)
- Buedenbender (1)
- olivroy (1)
Top Labels
Issue Labels
documentation (7)
Tutorial (6)
enhancement (6)
bug (4)
wontfix (1)
Pull Request Labels
Dependencies
DESCRIPTION
cran
- R >= 2.10 depends
- boot * imports
- car * imports
- dplyr * imports
- effectsize * imports
- flextable * imports
- ggplot2 * imports
- ggrepel * imports
- ggsignif * imports
- lmtest * imports
- methods * imports
- qqplotr * imports
- rlang * imports
- VennDiagram * suggests
- bootES * suggests
- emmeans * suggests
- knitr * suggests
- openxlsx * suggests
- patchwork * suggests
- rmarkdown * suggests
- see * suggests
- testthat >= 3.0.0 suggests
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v2 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/draft-pdf.yml
actions
- actions/checkout v2 composite
- actions/upload-artifact v1 composite
- openjournals/openjournals-draft-action master composite
- stefanzweifel/git-auto-commit-action v4 composite
.github/workflows/lint.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action 4.1.4 composite
- actions/checkout v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/revdep.yaml
actions
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/upload-artifact v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
