https://github.com/amazon-science/crossnorm-selfnorm

CrossNorm and SelfNorm for Generalization under Distribution Shifts, ICCV 2021

https://github.com/amazon-science/crossnorm-selfnorm

Science Score: 10.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org, zenodo.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.1%) to scientific vocabulary

Keywords

computer-vision domain-adaptation domain-generalization iccv-2021 model-robustness natural-language-processing normalization
Last synced: 5 months ago · JSON representation

Repository

CrossNorm and SelfNorm for Generalization under Distribution Shifts, ICCV 2021

Basic Info
  • Host: GitHub
  • Owner: amazon-science
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 474 KB
Statistics
  • Stars: 129
  • Watchers: 2
  • Forks: 7
  • Open Issues: 2
  • Releases: 0
Topics
computer-vision domain-adaptation domain-generalization iccv-2021 model-robustness natural-language-processing normalization
Created over 4 years ago · Last pushed over 4 years ago
Metadata Files
Readme Contributing License Code of conduct

README.md

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021)

This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm (CN) and SelfNorm (SN), two simple, effective, and complementary normalization techniques to improve generalization robustness under distribution shifts. @article{tang2021cnsn, title={CrossNorm and SelfNorm for Generalization under Distribution Shifts}, author={Zhiqiang Tang, Yunhe Gao, Yi Zhu, Zhi Zhang, Mu Li, Dimitris Metaxas}, journal={arXiv preprint arXiv:2102.02811}, year={2021} }

Install dependencies

shell conda create --name cnsn python=3.7 conda activate cnsn conda install numpy conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

Prepare datasets

  • Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar tar -xvf CIFAR-100-C.tar -C data/ tar -xvf CIFAR-10-C.tar -C data/

  • Download ImageNet-C with:

    mkdir -p ./data/ImageNet-C curl -O https://zenodo.org/record/2235448/files/blur.tar curl -O https://zenodo.org/record/2235448/files/digital.tar curl -O https://zenodo.org/record/2235448/files/noise.tar curl -O https://zenodo.org/record/2235448/files/weather.tar tar -xvf blur.tar -C data/ImageNet-C tar -xvf digital.tar -C data/ImageNet-C tar -xvf noise.tar -C data/ImageNet-C tar -xvf weather.tar -C data/ImageNet-C

Usage

We have included sample scripts in cifar10-scripts, cifar100-scripts, and imagenet-scripts. For example, there are 5 scripts for CIFAR-100 and WideResNet:

  1. ./cifar100-scripts/wideresnet/run-cn.sh

  2. ./cifar100-scripts/wideresnet/run-sn.sh

  3. ./cifar100-scripts/wideresnet/run-cnsn.sh

  4. ./cifar100-scripts/wideresnet/run-cnsn-consist.sh (Use CNSN with JSD consistency regularization)

  5. ./cifar100-scripts/wideresnet/run-cnsn-augmix.sh (Use CNSN with AugMix)

Pretrained models

| | +CN | +SN | +CNSN | +CNSN+IBN+AugMix | | :-------- |:---------:| :----:| :----:| :---: | | Top-1 err | 23.3 | 23.7 | 23.3 | 22.3 | | mCE | 75.1 | 73.8 | 69.7 | 62.8 |

Owner

  • Name: Amazon Science
  • Login: amazon-science
  • Kind: organization

GitHub Events

Total
  • Watch event: 2
  • Fork event: 1
Last Year
  • Watch event: 2
  • Fork event: 1

Issues and Pull Requests

Last synced: over 1 year ago

All Time
  • Total issues: 4
  • Total pull requests: 3
  • Average time to close issues: 4 days
  • Average time to close pull requests: 3 days
  • Total issue authors: 4
  • Total pull request authors: 1
  • Average comments per issue: 0.75
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 1
  • Pull request authors: 0
  • Average comments per issue: 0.0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • weix-liu (1)
  • liyuke65535 (1)
  • uulsj (1)
  • Genie-Kim (1)
Pull Request Authors
  • yhygao (3)
Top Labels
Issue Labels
Pull Request Labels