https://github.com/amazon-science/video-contrastive-learning
Video Contrastive Learning with Global Context, ICCVW 2021
https://github.com/amazon-science/video-contrastive-learning
Science Score: 10.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.6%) to scientific vocabulary
Keywords
Repository
Video Contrastive Learning with Global Context, ICCVW 2021
Basic Info
Statistics
- Stars: 158
- Watchers: 9
- Forks: 16
- Open Issues: 3
- Releases: 0
Topics
Metadata Files
README.md
Video Contrastive Learning with Global Context (VCLR)
This is the official PyTorch implementation of our VCLR paper.
@article{kuang2021vclr,
title={Video Contrastive Learning with Global Context},
author={Haofei Kuang, Yi Zhu, Zhi Zhang, Xinyu Li, Joseph Tighe, Sören Schwertfeger, Cyrill Stachniss, Mu Li},
journal={arXiv preprint arXiv:2108.02722},
year={2021}
}
Install dependencies
- environments
shell conda create --name vclr python=3.7 conda activate vclr conda install numpy scipy scikit-learn matplotlib scikit-image pip install torch==1.7.1 torchvision==0.8.2 pip install opencv-python tqdm termcolor gcc7 ffmpeg tensorflow==1.15.2 pip install mmcv-full==1.2.7
Prepare datasets
Please refer to PREPARE_DATA to prepare the datasets.
Prepare pretrained MoCo weights
In this work, we follow SeCo and use the pretrained weights of MoCov2 as initialization.
shell
cd ~
git clone https://github.com/amazon-research/video-contrastive-learning.git
cd video-contrastive-learning
mkdir pretrain && cd pretrain
wget https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_200ep/moco_v2_200ep_pretrain.pth.tar
cd ..
Self-supervised pretraining
shell
bash shell/main_train.sh
Checkpoints will be saved to ./results
Downstream tasks
Linear evaluation
In order to evaluate the effectiveness of self-supervised learning, we conduct a linear evaluation (probing) on Kinetics400 dataset. Basically, we first extract features from the pretrained weight and then train a SVM classifier to see how the learned features perform.
shell
bash shell/eval_svm.sh
- Results
| Arch | Pretrained dataset | Epoch | Pretrained model | Acc. on K400 | | :------: | :-----: | :-----: | :-----: | :-----: | | ResNet50 | Kinetics400 | 400 | Download link | 64.1 |
Video retrieval
shell
bash shell/eval_retrieval.sh
- Results
| Arch | Pretrained dataset | Epoch | Pretrained model | R@1 on UCF101 | R@1 on HMDB51 | | :------: | :-----: | :-----: | :-----: | :-----: | :-----: | | ResNet50 | Kinetics400 | 400 | Download link | 70.6 | 35.2 | | ResNet50 | UCF101 | 400 | Download link | 46.8 | 17.6 |
Action recognition & action localization
Here, we use mmaction2 for both tasks. If you are not familiar with mmaction2, you can read the official documentation.
Installation
- Step1: Install mmaction2
To make sure the results can be reproduced, please use our forked version of mmaction2 (version: 0.11.0): ```shell conda activate vclr cd ~ git clone https://github.com/KuangHaofei/mmaction2
cd mmaction2 pip install -v -e . ``` - Step2: Prepare the pretrained weights
Our pretrained backbone have different format with the backbone of mmaction2, it should be transferred to mmaction2 format. We provide the transferred version of our K400 pretrained weights, TSN and TSM. We also provide the script for transferring weights, you can find it here.
Moving the pretrained weights to checkpoints directory:
shell
cd ~/mmaction2
mkdir checkpoints
wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm.pth
wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm_tsm.pth
Action recognition
Make sure you have prepared the dataset and environments following the previous step. Now suppose you are in the root directory of mmaction2, follow the subsequent steps to fine tune the TSN or TSM models for action recognition.
For each dataset, the train and test setting can be found in the configuration files.
UCF101
- config file: tsn_ucf101.py
- train command:
shell ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_ucf101.py 8 \ --validate --seed 0 --deterministic - test command:
shell python tools/test.py configs/recognition/tsn/vclr/tsn_ucf101.py \ work_dirs/vclr/ucf101/latest.pth \ --eval top_k_accuracy mean_class_accuracy --out result.json
HMDB51
- config file: tsn_hmdb51.py
- train command:
shell ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_hmdb51.py 8 \ --validate --seed 0 --deterministic - test command:
shell python tools/test.py configs/recognition/tsn/vclr/tsn_hmdb51.py \ work_dirs/vclr/hmdb51/latest.pth \ --eval top_k_accuracy mean_class_accuracy --out result.json
SomethingSomethingV2: TSN
- config file: tsn_sthv2.py
- train command:
shell ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_sthv2.py 8 \ --validate --seed 0 --deterministic - test command:
shell python tools/test.py configs/recognition/tsn/vclr/tsn_sthv2.py \ work_dirs/vclr/tsn_sthv2/latest.pth \ --eval top_k_accuracy mean_class_accuracy --out result.json
SomethingSomethingV2: TSM
- config file: tsm_sthv2.py
- train command:
shell ./tools/dist_train.sh configs/recognition/tsm/vclr/tsm_sthv2.py 8 \ --validate --seed 0 --deterministic - test command:
shell python tools/test.py configs/recognition/tsm/vclr/tsm_sthv2.py \ work_dirs/vclr/tsm_sthv2/latest.pth \ --eval top_k_accuracy mean_class_accuracy --out result.json
ActivityNet
- config file: tsn_activitynet.py
- train command:
shell ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_activitynet.py 8 \ --validate --seed 0 --deterministic - test command:
shell python tools/test.py configs/recognition/tsn/vclr/tsn_activitynet.py \ work_dirs/vclr/tsn_activitynet/latest.pth \ --eval top_k_accuracy mean_class_accuracy --out result.json
Results
| Arch | Dataset | Finetuned model | Acc. | | :------: | :-----: | :-----: | :-----: | | TSN | UCF101 | Download link | 85.6 | | TSN | HMDB51 | Download link | 54.1 | | TSN | SomethingSomethingV2 | Download link | 33.3 | | TSM | SomethingSomethingV2 | Download link | 52.0 | | TSN | ActivityNet | Download link | 71.9 |
Action localization
Step 1: Follow the previous section, suppose the finetuned model is saved at
work_dirs/vclr/tsn_activitynet/latest.pthStep 2: Extract ActivityNet features ```shell cd ~/mmaction2/tools/data/activitynet/
python tsnfeatureextraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \ --data-list /home/ubuntu/data/ActivityNet/anettrainvideo.txt \ --output-prefix /home/ubuntu/data/ActivityNet/rgbfeat \ --modality RGB --ckpt /home/ubuntu/mmaction2/workdirs/vclr/tsn_activitynet/latest.pth
python tsnfeatureextraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \ --data-list /home/ubuntu/data/ActivityNet/anetvalvideo.txt \ --output-prefix /home/ubuntu/data/ActivityNet/rgbfeat \ --modality RGB --ckpt /home/ubuntu/mmaction2/workdirs/vclr/tsn_activitynet/latest.pth
python activitynetfeaturepostprocessing.py \
--rgb /home/ubuntu/data/ActivityNet/rgbfeat \
--dest /home/ubuntu/data/ActivityNet/mmactionfeat
``
Note, the root directory of ActivityNey is/home/ubuntu/data/ActivityNet/` in our case. Please replace it according to your real directory.
Step 3: Train and test the BMN model
- train
shell cd ~/mmaction2 ./tools/dist_train.sh configs/localization/bmn/bmn_acitivitynet_feature_vclr.py 2 \ --work-dir work_dirs/vclr/bmn_activitynet --validate --seed 0 --deterministic --bmn - test
shell python tools/test.py configs/localization/bmn/bmn_acitivitynet_feature_vclr.py \ work_dirs/vclr/bmn_activitynet/latest.pth \ --bmn --eval AR@AN --out result.json
- train
Results
| Arch | Dataset | Finetuned model | AUC | AR@100 | | :------: | :-----: | :-----: | :-----: | :-----: | | BMN | ActivityNet | Download link | 65.5 | 73.8 |
Feature visualization
We provide our feature visualization code at here.
Security
See CONTRIBUTING for more information.
License
This project is licensed under the Apache-2.0 License.
Owner
- Name: Amazon Science
- Login: amazon-science
- Kind: organization
- Website: https://amazon.science
- Twitter: AmazonScience
- Repositories: 80
- Profile: https://github.com/amazon-science
GitHub Events
Total
- Watch event: 2
Last Year
- Watch event: 2
Issues and Pull Requests
Last synced: over 1 year ago
All Time
- Total issues: 9
- Total pull requests: 4
- Average time to close issues: 23 days
- Average time to close pull requests: about 1 hour
- Total issue authors: 6
- Total pull request authors: 2
- Average comments per issue: 2.0
- Average comments per pull request: 0.0
- Merged pull requests: 4
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- AllenPu (3)
- wangll1212 (2)
- Tramac (1)
- rayush7 (1)
- vansin (1)
- icorley-bsky (1)
Pull Request Authors
- bryanyzhu (2)
- KuangHaofei (2)