https://github.com/amberlee2427/nancy-brain
Nancy's RAG backend and HTTP API/MCP server connectors.
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (17.0%) to scientific vocabulary
Keywords
Repository
Nancy's RAG backend and HTTP API/MCP server connectors.
Basic Info
- Host: GitHub
- Owner: AmberLee2427
- License: mit
- Language: Python
- Default Branch: main
- Homepage: https://amberlee2427.github.io/nancy-brain/
- Size: 2.29 MB
Statistics
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
- Releases: 2
Topics
Metadata Files
README.md
Nancy Brain
Turn any GitHub repository into a searchable knowledge base for AI agents.
Load the complete source code, documentation, examples, and notebooks from any package you're working with. Nancy Brain gives AI assistants instant access to:
- Full source code - actual Python classes, methods, implementation details
- Live documentation - tutorials, API docs, usage examples
- Real examples - Jupyter notebooks, test cases, configuration files
- Smart weighting - boost important docs, learning persists across sessions
The AI can now answer questions like "How do I initialize this class?" or "Show me an example of fitting a light curve" with actual code from the repositories you care about.
🚀 Quick Start
```bash
Install anywhere
pip install nancy-brain
Initialize a new project
nancy-brain init my-ai-project cd my-ai-project
Add some repositories
nancy-brain add-repo https://github.com/scikit-learn/scikit-learn.git
Build the knowledge base
nancy-brain build
Search it!
nancy-brain search "machine learning algorithms"
Or launch the web interface
nancy-brain ui ```
🌐 Web Admin Interface
Launch the visual admin interface for easy knowledge base management:
bash
nancy-brain ui
Features: - 🔍 Live Search - Test your knowledge base with instant results - 📚 Repository Management - Add/remove GitHub repos with visual forms - 📄 Article Management - Add/remove PDF articles with visual forms - 🏗️ Build Control - Trigger knowledge base builds with options - 📊 System Status - Check embeddings, configuration, and health
Perfect for non-technical users and rapid prototyping!
🖥️ Command Line Interface
bash
nancy-brain init <project> # Initialize new project
nancy-brain add-repo <url> # Add GitHub repositories
nancy-brain add-article <url> <name> # Add PDF articles
nancy-brain build # Build knowledge base
nancy-brain search "query" # Search knowledge base
nancy-brain serve # Start HTTP API server
nancy-brain ui # Launch web admin interface
Technical Architecture
A lightweight Retrieval-Augmented Generation (RAG) knowledge base with: - Embedding + search pipeline (txtai / FAISS based) - HTTP API connector (FastAPI) - Model Context Protocol (MCP) server connector (tools for search / retrieve / tree / weight) - Dynamic weighting system (extension/path weights + runtime doc preferences)
Designed to power AI assistants on Slack, IDEs, Claude Desktop, custom GPTs, and any MCP-capable client.
1. Installation & Quick Setup
For Users (Recommended)
```bash
Install the package
pip install nancy-brain
Initialize a new project
nancy-brain init my-knowledge-base cd my-knowledge-base
Add repositories and build
nancy-brain add-repo https://github.com/your-org/repo.git nancy-brain add-article "https://arxiv.org/pdf/paper.pdf" "paper_name" --description "Important paper" nancy-brain build
Launch web interface
nancy-brain ui ```
For Developers
```bash
Clone and install in development mode
git clone
Test installation
pytest -q nancy-brain --help ```
Note for developers: The build pipeline now requires docutils and pylatexenc to reliably convert
reStructuredText (.rst) and LaTeX (.tex) files to plain text. These are included in the project's
dependencies (pyproject.toml) so pip install -e ."[dev]" will install them automatically. If you
prefer to install them manually in your environment, run:
bash
pip install docutils pylatexenc
Developer note (CLI & tests):
The CLI commands and RAGService avoid importing heavy ML libraries (such as txtai and torch) at
module import time. The service defers initializing the embedding Search until an embeddings index is
present or a command explicitly needs it. This makes running CLI help and most unit tests fast and safe
in minimal environments. If a test needs a functioning Search, mock rag_core.search (insert a
dummy module into sys.modules['rag_core.search']) before instantiating RAGService.
2. Project Layout (Core Parts)
``` nancybrain/ # Main Python package ├── cli.py # Command line interface ├── adminui.py # Streamlit web admin interface └── init.py # Package initialization
connectors/httpapi/app.py # FastAPI app connectors/mcpserver/ # MCP server implementation ragcore/ # Core service, search, registry, store, types scripts/ # KB build & management scripts config/repositories.yml # Source repository list (input KB) config/weights.yaml # Extension + path weighting config config/modelweights.yaml # (Optional) static per-doc multipliers ```
3. Configuration
3.1 Repositories (config/repositories.yml)
Structure (categories map to lists of repos):
yaml
<category_name>:
- name: repoA
url: https://github.com/org/repoA.git
- name: repoB
url: https://github.com/org/repoB.git
Categories become path prefixes inside the knowledge base (e.g. cat1/repoA/...).
3.2 Weight Config (config/weights.yaml)
extensions: base multipliers by file extension (.py, .md, etc.)path_includes: if substring appears in doc_id, multiplier is applied multiplicatively.
3.3 Model Weights (config/model_weights.yaml)
Optional static per-document multipliers (legacy / seed). Runtime updates via /weight endpoint or MCP set_weight tool override or augment in-memory weights.
3.4 Environment Variables
| Var | Purpose | Default |
|-----|---------|---------|
| USE_DUAL_EMBEDDING | Enable dual (general + code) embedding scoring | true |
| CODE_EMBEDDING_MODEL | Model name for code index (if dual) | microsoft/codebert-base |
| KMP_DUPLICATE_LIB_OK | Set to TRUE to avoid OpenMP macOS clash | TRUE |
4. Building the Knowledge Base
Embeddings must be built before meaningful search.
Using the CLI (Recommended)
```bash
Basic build (repositories only)
nancy-brain build
Build with PDF articles (if configured)
nancy-brain build --articles-config config/articles.yml
Force update all repositories
nancy-brain build --force-update
Or use the web interface
nancy-brain ui # Go to "Build Knowledge Base" page ```
Using the Python Script Directly
```bash conda activate nancy-brain cd src/nancy-brain
Basic build (repositories only)
python scripts/buildknowledgebase.py \ --config config/repositories.yml \ --embeddings-path knowledge_base/embeddings
Full build including optional PDF articles (if config/articles.yml exists)
python scripts/buildknowledgebase.py \ --config config/repositories.yml \ --articles-config config/articles.yml \ --base-path knowledgebase/raw \ --embeddings-path knowledgebase/embeddings \ --force-update \ --dirty
You can run without the dirty tag to automatically
remove source material after indexing is complete
``
Runpython scripts/buildknowledgebase.py -h` for all options.
4.1 PDF Articles (Optional Quick Setup)
- Create
config/articles.yml(example): ```yaml journal_articles:- name: Paczynski1986ApJ3041 url: https://ui.adsabs.harvard.edu/linkgateway/1986ApJ...304....1P/PUBPDF description: Paczynski (1986) – Gravitational microlensing ```
- Install Java (for Tika PDF extraction) – macOS:
bash brew install openjdk export JAVA_HOME="/opt/homebrew/opt/openjdk" export PATH="$JAVA_HOME/bin:$PATH" - (Optional fallback only) Install lightweight PDF libs if you skip Java:
bash pip install PyPDF2 pdfplumber - Build with articles (explicit):
bash python scripts/build_knowledge_base.py --config config/repositories.yml --articles-config config/articles.yml - Keep raw PDFs for inspection: add
--dirty.
Notes:
- If Java/Tika not available, script attempts fallback extraction (needs PyPDF2/pdfplumber or fitz).
- Cleanups remove raw PDFs unless --dirty supplied.
- Article docs are indexed under journal_articles/<category>/<name>.
Key flags:
- --config path to repositories YAML (was --repositories in older docs)
- --articles-config optional PDF articles YAML
- --base-path where raw repos/PDFs live (default knowledge_base/raw)
- --embeddings-path output index directory
- --force-update re-pull repos / re-download PDFs
- --category <name> limit to one category
- --dry-run show actions without performing
- --dirty keep raw sources (skip cleanup)
This will:
1. Clone / update listed repos under knowledge_base/raw/<category>/<repo>
2. (Optionally) download PDFs into category directories
3. Convert notebooks (*.ipynb -> *.nb.txt) if nb4llm available
4. Extract and normalize text + (optionally) PDF text
5. Build / update embeddings index at knowledge_base/embeddings (and code_index if dual embeddings enabled)
Re-run when repositories or articles change.
5. Running Services
Web Admin Interface (Recommended for Getting Started)
```bash nancy-brain ui
Opens Streamlit interface at http://localhost:8501
Features: search, repo management, build control, status
```
HTTP API Server
```bash
Using CLI
nancy-brain serve
Or directly with uvicorn
uvicorn connectors.http_api.app:app --host 0.0.0.0 --port 8000 ```
MCP Server (for AI Assistants)
```bash
Run MCP stdio server
python runmcpserver.py ```
Initialize service programmatically (example pattern):
python
from pathlib import Path
from connectors.http_api.app import initialize_rag_service
initialize_rag_service(
config_path=Path('config/repositories.yml'),
embeddings_path=Path('knowledge_base/embeddings'),
weights_path=Path('config/weights.yaml'),
use_dual_embedding=True
)
The FastAPI dependency layer will then serve requests.
Command Line Search
```bash
Quick search from command line
nancy-brain search "machine learning algorithms" --limit 5
Search with custom paths
nancy-brain search "neural networks" \ --embeddings-path custom/embeddings \ --config custom/repositories.yml ```
5.1 Endpoints (Bearer auth placeholder)
| Method | Path | Description |
|--------|------|-------------|
| GET | /health | Service status |
| GET | /version | Index / build meta |
| GET | /search?query=...&limit=N | Search documents |
| POST | /retrieve | Retrieve passage (doc_id + line range) |
| POST | /retrieve/batch | Batch retrieve |
| GET | /tree?prefix=... | List KB tree |
| POST | /weight | Set runtime doc weight |
Example:
bash
curl -H "Authorization: Bearer TEST" 'http://localhost:8000/search?query=light%20curve&limit=5'
Admin UI Authentication
The Streamlit admin UI supports HTTP API authentication (recommended) and a convenience insecure bypass for local development.
- To use the HTTP API for auth, ensure your API is running and set
NB_API_URLif not using the default:
bash
export NB_API_URL="http://localhost:8000"
streamlit run nancy_brain/admin_ui.py
- For local development without an API, enable an insecure bypass (only use locally):
bash
export NB_ALLOW_INSECURE=true
streamlit run nancy_brain/admin_ui.py
The admin UI stores the access token and refresh token in st.session_state for the current Streamlit session.
Set a document weight (boost factor 0.5–2.0 typical):
bash
curl -X POST -H 'Authorization: Bearer TEST' \
-H 'Content-Type: application/json' \
-d '{"doc_id":"cat1/repoA/path/file.py","multiplier":2.0}' \
http://localhost:8000/weight
6. MCP Server
Run the MCP stdio server:
bash
python run_mcp_server.py
Tools exposed (operation names):
- search (query, limit)
- retrieve (docid, start, end)
- `retrievebatch
-tree(prefix, depth)
-setweight` (docid, multiplier)
- status / version
6.1 VS Code Integration
- Install a Model Context Protocol client extension (e.g. "MCP Explorer" or equivalent).
- Add a server entry pointing to the script, stdio transport. Example config snippet:
{ "mcpServers": { "nancy-brain": { "command": "python", "args": ["/absolute/path/to/src/nancy-brain/run_mcp_server.py"], "env": { "PYTHONPATH": "/absolute/path/to/src/nancy-brain" } } } }
Specific mamba environment example:
{
"servers": {
"nancy-brain": {
"type": "stdio",
"command": "/Users/malpas.1/.local/share/mamba/envs/nancy-brain/bin/python",
"args": [
"/Users/malpas.1/Code/slack-bot/src/nancy-brain/run_mcp_server.py"
],
"env": {
"PYTHONPATH": "/Users/malpas.1/Code/slack-bot/src/nancy-brain",
"KMP_DUPLICATE_LIB_OK": "TRUE"
}
}
},
"inputs": []
}
- Reload VS Code. The provider should list the tools; invoke
searchto test.
6.2 Claude Desktop
Claude supports MCP config in its settings file. Add an entry similar to above (command + args). Restart Claude Desktop; tools appear in the prompt tools menu.
7. Use Cases & Examples
For Researchers
```bash
Add astronomy packages
nancy-brain add-repo https://github.com/astropy/astropy.git nancy-brain add-repo https://github.com/rpoleski/MulensModel.git
Add key research papers
nancy-brain add-article \ "https://ui.adsabs.harvard.edu/linkgateway/1986ApJ...304....1P/PUBPDF" \ "Paczynski1986microlensing" \ --category "foundational_papers" \ --description "Paczynski (1986) - Gravitational microlensing by the galactic halo"
nancy-brain build
AI can now answer: "How do I model a microlensing event?"
nancy-brain search "microlensing model fit" ```
For ML Engineers
```bash
Add ML frameworks
nancy-brain add-repo https://github.com/scikit-learn/scikit-learn.git nancy-brain add-repo https://github.com/pytorch/pytorch.git nancy-brain build
AI can now answer: "Show me gradient descent implementation"
nancy-brain search "gradient descent optimizer" ```
For Teams
```bash
Launch web interface for non-technical users
nancy-brain ui
Point team to http://localhost:8501
They can search, add repos, manage articles, trigger builds visually
Repository Management tab: Add GitHub repos
Articles tab: Add PDF papers and documents
```
8. Slack Bot (Nancy)
The Slack-facing assistant lives outside this submodule (see parent repository). High-level steps:
1. Ensure HTTP API running and reachable (or embed service directly in bot process).
2. Bot receives user message -> constructs query -> calls /search and selected /retrieve for context.
3. Bot composes answer including source references (doc_id and GitHub URL) before sending back.
4. Optional: adaptively call /weight when feedback indicates a source should be boosted or dampened.
Check root-level nancy_bot.py or Slack integration docs (SLACK.md) for token setup and event subscription details.
9. Custom GPT (OpenAI Actions / Function Calls)
Define OpenAI tool specs mapping to HTTP endpoints:
- searchDocuments(query, limit) -> GET /search
- retrievePassage(doc_id, start, end) -> POST /retrieve
- listTree(prefix, depth) -> GET /tree
- setWeight(doc_id, multiplier) -> POST /weight
Use an API gateway or direct URL. Include auth header. Provide JSON schemas matching request/response models.
10. Dynamic Weighting Flow
- Base score from embeddings (dual or single).
- Extension multiplier (from weights.yaml).
- Path multiplier(s) (cumulative).
- Model weight (static config + runtime overrides via
/weight). - Adjusted score = base * extensionweight * modelweight (and any path multipliers folded into extension weight step).
Runtime /weight takes effect immediately on subsequent searches.
11. Updating / Rebuilding
| Action | Command |
|--------|---------|
| Pull repo updates | nancy-brain build --force-update or re-run build script |
| Change extension weights | Edit config/weights.yaml (no restart needed for runtime? restart or rebuild if cached) |
| Change embedding model | Delete / rename existing knowledge_base/embeddings and rebuild with new env vars |
12. Deployment Notes
- Containerize: build image with pre-built embeddings baked or mount a persistent volume.
- Health probe:
/health(returns 200 once rag_service initialized) else 503. - Concurrency: FastAPI async safe; weight updates are simple dict writes (low contention). For heavy load consider a lock if races appear.
- Persistence of runtime weights: currently in-memory; persist manually if needed (extend
set_weight).
13. Troubleshooting
| Symptom | Cause | Fix |
|---------|-------|-----|
| 503 RAG service not initialized | initialize_rag_service not called / wrong paths | Call initializer with correct embeddings path |
| Empty search results | Embeddings not built / wrong path | Re-run nancy-brain build, verify index directory |
| macOS OpenMP crash | MKL / libomp duplicate | KMP_DUPLICATE_LIB_OK=TRUE already set early |
| MCP tools not visible | Wrong path or PYTHONPATH | Use absolute paths in MCP config |
| CLI command not found | Package not installed | pip install nancy-brain |
Enable debug logging:
bash
export LOG_LEVEL=DEBUG
(add logic or run with uvicorn --log-level debug)
14. Development & Contributing
```bash
Clone and set up development environment
git clone
Run tests
pytest
Run linting
black nancybrain/ flake8 nancybrain/
Test CLI locally
nancy-brain --help ```
Releasing
Nancy Brain uses automated versioning and PyPI publishing:
```bash
Bump patch version (0.1.0 → 0.1.1)
./release.sh patch
Bump minor version (0.1.0 → 0.2.0)
./release.sh minor
Bump major version (0.1.0 → 1.0.0)
./release.sh major ```
This automatically:
1. Updates version numbers in pyproject.toml and nancy_brain/__init__.py
2. Creates a git commit and tag
3. Pushes to GitHub, triggering PyPI publication via GitHub Actions
Manual version management: ```bash
See current version and bump options
bump-my-version show-bump
Dry run (see what would change)
bump-my-version bump --dry-run patch ```
15. Roadmap (Optional)
- Persistence layer for runtime weights
- Additional retrieval filters (e.g. semantic rerank)
- Auth plugin / token validation
- VS Code extension
- Package publishing to PyPI
16. License
See parent repository license.
17. Minimal Verification Script
```bash
After build & run
curl -H 'Authorization: Bearer TEST' 'http://localhost:8000/health' ``` Expect JSON with status + trace_id.
Happy searching.
Owner
- Name: Amber
- Login: AmberLee2427
- Kind: user
- Location: New Zealand
- Repositories: 1
- Profile: https://github.com/AmberLee2427
GitHub Events
Total
- Release event: 1
- Push event: 28
- Create event: 4
Last Year
- Release event: 1
- Push event: 28
- Create event: 4
Packages
- Total packages: 1
-
Total downloads:
- pypi 444 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 4
- Total maintainers: 1
pypi.org: nancy-brain
Turn any GitHub repository into a searchable knowledge base for AI agents
- Homepage: https://github.com/AmberLee2427/nancy-brain
- Documentation: https://github.com/AmberLee2427/nancy-brain/blob/main/README.md
- License: MIT
-
Latest release: 0.1.5
published 6 months ago
Rankings
Maintainers (1)
Dependencies
- aiohttp >=3.8.0
- faiss-cpu >=1.7.1.post2
- fastapi >=0.104.0
- mcp >=1.13.0
- nb4llm >=0.1.3
- pydantic >=2.0.0
- python-dotenv >=1.0.0
- pyyaml >=5.3
- regex >=2022.8.17
- requests >=2.28.0
- slack-bolt >=1.18.0
- slack-sdk >=3.18.0
- torch >=1.12.1
- transformers >=4.45.0
- txtai >=7.0.0
- uvicorn >=0.24.0