https://github.com/amirabbasasadi/mathematics-computerscience-courses

A collection of awesome mathematics and computer science courses

https://github.com/amirabbasasadi/mathematics-computerscience-courses

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (5.4%) to scientific vocabulary

Keywords

bayesian-methods course learning-resources machine-learning mathematics probability statistics
Last synced: 5 months ago · JSON representation

Repository

A collection of awesome mathematics and computer science courses

Basic Info
  • Host: GitHub
  • Owner: amirabbasasadi
  • Default Branch: main
  • Homepage:
  • Size: 166 KB
Statistics
  • Stars: 125
  • Watchers: 4
  • Forks: 11
  • Open Issues: 0
  • Releases: 0
Topics
bayesian-methods course learning-resources machine-learning mathematics probability statistics
Created over 1 year ago · Last pushed about 1 year ago
Metadata Files
Readme

README.md

Mathematics / Computer Science Courses

A collection of some useful mathematics and computer science courses

Courses

Deep Learning for Computer Vision

Prof. Justin Johnson, University of Michigan, 2019

image

  • Linear classifiers
  • Stochastic gradient descent
  • Fully-connected networks
  • Convolutional networks
  • Recurrent networks
  • Attention and transformers
  • Object detection
  • Image segmentation
  • Video classification
  • Generative models (GANs, VAEs, autoregressive models)
  • Reinforcement Learning

🎥 Lectures: https://youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r

High-Dimensional Probability

Roman Vershynin

image

🎥 Lectures: https://youtube.com/playlist?list=PLPjEEUWIWhQV7X6dXfrVP3w0KBBLBVJ0j
📔 Textbook : https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html

Deep Unsupervised Learning

Prof. Pieter Abbeel, UC Berkeley, 2024

image

  • Autoregressive Models
  • Flow Models
  • Latent Variable Models & Variational AutoEncoders (VAEs)
  • Generative Adversarial Networks (GANs)
  • Diffusion Models
  • Self-Supervised Learning
  • Large Language Models (LLMs)
  • Generative Video
  • Semisupervised Learning & Unsupervised Distribution Alignment
  • Generative Modeling for Science
  • Neural Radiance Fields
  • Multimodal Models
  • Parallelization

🎥 Lectures: https://youtube.com/playlist?list=PLwRJQ4m4UJjPIvv4kgBkvuuygrV3utU

Deep Generative Models

Prof. Stefano Ermon, Stanford University, 2023

image

  • Autoregressive Models
  • Maximum Likelihood Learning
  • Variational AutoEncoders (VAEs)
  • Normalizing Flows
  • Generative Adversarial Networks (GANs)
  • Energy Based Models (EBMs)
  • Score Based Models
  • Evaluation of Generative Models

🎥 Lectures: https://youtube.com/playlist?list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8
📔 Course page containing lecture notes: https://deepgenerativemodels.github.io

Geometric Deep Learning

African Master’s in Machine Intelligence, 2022

image

  • High-Dimensional Learning
  • Geometric Priors
  • Graphs & Sets
  • Grids
  • Groups
  • Geodesics & Manifolds
  • Gauges

🎥 Lectures: https://youtube.com/playlist?list=PLn2-dEmQeTfSLXW8yXP4q_Ii58wFdxb3C
📔 webpage : https://geometricdeeplearning.com

Machine Learning with Graphs

Prof. Jure Leskovec, Stanford University, 2021

image

🎥 Lectures: https://youtube.com/playlist?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn

Reinforcement Learning Theory

Prof. Csaba Szepesvári, University of Alberta, 2022

image

  • MDP, Fundamental Theorem
  • Value and Policy Iteration
  • Local Planning
  • Function Approximation
  • Approximate Policy Iteration
  • Planning Complexity, TensorPlan
  • Lower Bound for API and POLITEX
  • Policy Search
  • Batch RL
  • Online RL

🎥 Lectures: https://www.youtube.com/playlist?list=PLQCZ7_TRKVIzODPXorEyvhCk25TlcTANC
📔 webpage : https://rltheory.github.io/

Multi-Agent Reinforcement Learning

Dr. Stefano V. Albrecht, 2023
image

🎥 Lectures: https://www.youtube.com/playlist?list=PLkoCa1tf0XjCU6GkAfRCkChOOSH6-JC_2
📔 Textbook : http://www.marl-book.com/

Numerics of Machine Learning

University of Tübingen, 2023

image

  • Numerical Linear Algebra
  • Scaling Gaussian Processes
  • Computation-aware Gaussian Processes
  • State Space Models
  • Solving Ordinary Differential Equations
  • Probabilistic Numerical ODE Solvers
  • Partial Differential Equations
  • Monte Carlo
  • Bayesian Quadrature
  • Optimization for Deep Learning
  • Second-order Optimization for Deep Learning
  • Uncertainty in Deep Learning

🎥 Lectures : https://www.youtube.com/playlist?list=PL05umP7R6ij2lwDdj7IkuHoP9vHlEcH0s

Reinforcement Learning

Stanford, Prof. Emma Brunskill, 2024

image

  • Introduction to Reinforcement Learning
  • Tabular MDP planning
  • Policy Evaluation
  • Q learning and Function Approximation
  • Policy Search
  • Offline RL
  • Exploration
  • Multi-Agent Games
  • Value Alignment

🎥 Lectures: https://www.youtube.com/playlist?list=PLoROMvodv4rN4wG6Nk6sNpTEbuOSosZdX

Model-Based Image and Signal Processing

Purdue University, Prof. Charles A. Bouman, 2020

image

  • Probability
  • Causal Gaussian Models
  • Non-Causal Gaussian Models
  • MAP with Gaussian Priors
  • Non-Gaussian Markov Random Fields
  • Non-Gaussian MAP
  • Majorization
  • Constrained Optimization
  • Plug and Play
  • EM Algorithm
  • Markov Chains and HMMs
  • General MRFs
  • Stochastic Simulation
  • MAP Segmentation

🎥 Lectures : https://www.youtube.com/playlist?list=PL3ZrjaBngMS0mTSoMsy7P6rTFSgsmsMw3
📔 Textbook: https://engineering.purdue.edu/~bouman/publications/FCI-book/

Convex Optimization

Stanford, Prof. Stephen Boyd, 2023

image

  • Convex sets
  • Convex functions
  • Convex optimization problems
  • Duality
  • Approximation and fitting
  • Statistical estimation
  • Geometric problems
  • Numerical linear algebra background
  • Unconstrained minimization
  • Equality constrained minimization
  • Interior-point methods

🎥 Lectures: https://www.youtube.com/playlist?list=PLoROMvodv4rMJqxxviPa4AmDClvcbHi6h
📔 Textbook : https://stanford.edu/~boyd/cvxbook/

Learning in Games and Games in Learning

University of Pennsylvania, Prof. Aaron Roth, 2023

image
A mathematical course focusing on the interplay between game theory and machine learning: - Introduction to sequential learning - Halving algorithm - Follow the perturbed leader - Follow the regularized leader - Online convex optimization - Zero-sum games, Minimax theorem - Deriving a no regret learning algorithm - Correlated equilibrium, Swap regret - The adversary moves first framework - Multi-objective sequential learning

🎥 YouTube (24 lectures) : https://www.youtube.com/playlist?list=PLlIlherS4U2pfxYwB15nhzHEKF53xUl
📔 Lecture notes: https://mlgametheory.com/

Foundations of Reinforcement Learning

Princeton University, Prof. Chi Jin, 2024

image
A graduate level course on theoretical foundations of reinforcement learning:
- MDP basics and planning - Concentration inequalities, Martingale concentrations - Generative models, value iteration - Online RL, exploration, optimism - Minimax lower bound - Offline RL, pessimism - Policy optimization - Large state space, linear function approximation - General function approximation - Game theory and multiagent RL - Learning Markov games - Partial observable MDP

🎥 YouTube (22 lectures) : https://www.youtube.com/playlist?list=PLYXvCE1En13epbogBmgafC_Yyyk9oQogl
📔 Course page containing lecture notes: https://sites.google.com/view/cjin/teaching/ece524

Graduate Topics in Deep Learning Theory

Harvard Center of Mathematical Sciences and Applications, Dr. Eli Grigsby, 2024

image

A course on geometric aspects of deep learning theory: - The geometry and combinatorics of feedforward ReLU neural networks as piecewise linear function classes - Neural networks as universal approximators: discrete and non-discrete versions - The role of the superposition hypothesis in mechanistic interpretability of neural networks - Neural network architectures for sequence-to-sequence processing - Representing finite state automata using sequence-to-sequence architectures - Geometric distortion in deep networks and the importance of residual connections - Symmetries of overparameterized ReLU neural networks, optimization, and generalization - Algorithmic computation of topological invariants of decision boundaries/regions

🎥 YouTube: https://youtube.com/playlist?list=PL0NRmB0fnLJSEXFQHGF0q5JcedxTqK4AJ&si=G0rk4GBgywt6kypK
📔 Course page : https://sites.google.com/bc.edu/eli-grigsby/mt875-mechanistic-interpretability

Probabilistic Programming

University of British Columbia, Dr. Frank Wood, 2021

image

  • Introduction to Model-Based Reasoning
  • Graphical Models
  • Inference, Learning, Monte Carlo, Sampling
  • Markov Chain Monte Carlo
  • First Order Probabilistic Programming Languages
  • Graphical Model Compilation
  • Graph-Based Inference
  • Hamiltonian Monte Carlo
  • Evaluation-based Inference
  • Variational Inference
  • Higher Order Probabilistic Programming Languages
  • Amortized Inference / Guide Programs / Inference Compilation
  • Reinforcement Learning as Inference
  • Alternative Variational Bounds
  • Reparametrization and Normalizing Flows

🎥 25 lectures on YouTube: https://youtube.com/playlist?list=PLRBUAK6di_6XlF7KAZBPRgcP0zD5sVXcN&si=9hjsRE1bav7vTqbG
📔 An Introduction to Probabilistic Programming: https://arxiv.org/abs/1809.10756

Learning and Reasoning with Bayesian Networks

UCLA, Prof. Adnan Darwiche

image

  • Propositional Logic
  • Probability Calculus: Beliefs and Hard Evidence, Soft Evidence
  • Bayesian Networks: Syntax and Semantics
  • Bayesian Networks: Independence and d-Separation
  • Probabilistic Queries and their Complexity
  • Building Bayesian Networks
  • Inference by Variable Elimination
  • The Jointree Algorithm
  • Inference by Conditioning
  • Arithmetic Circuits
  • Loopy Belief Propagation
  • Learning Parameters
  • Learning Network Structure
  • Bayesian Learning
  • Causality
  • Sensitivity Analysis
  • Reasoning about Classifiers
  • Explaining Classifiers

🎥 YouTube Playlist(32 lectures + 4 additional lectures on causality): https://youtube.com/playlist?list=PLlDG_zCuBub6ywAIrM1DfJp8xaeVjyvwx
📔 Textbook: Modeling and Reasoning with Bayesian Networks, Adnan Darwiche

Kernel methods in machine learning

ENS Paris-Saclay, Dr. Julien Mairal, Dr. Jean-Philippe Vert

image

  • Positive definite kernels
  • Reproducing Kernel Hilbert Space
  • Smoothness functional, Kernel trick, Representer theorem
  • Kernel ridge and logistic regression
  • Large-margin classifiers, SVMs
  • Unsupervised kernel methods
  • Green, Mercer, Herglotz, Bochner and friends
  • Kernels for graphs
  • Multiple kernels learning
  • Large-scale learning
  • Deep kernel machines
  • Kernels for probabilistic models
  • Kernel mean embedding
  • Characteristic kernels

🎥 YouTube Playlist (25 lectures): https://www.youtube.com/playlist?list=PLD93kGj6EdrkNj27AZMecbRlQ1SMkpo

Advanced Robotics

UC Berkeley, Prof. Pieter Abbeel, 2019

image

  • Markov Decision Processes: Exact Methods
  • Discretization of Continuous State Space MDPs
  • Function Approximation
  • LQR, iterative LQR, Differential Dynamic Programming
  • Unconstrained Optimization
  • Constrained Optimization
  • Optimization-based Control
  • Motion Planning
  • Kalman Filtering, EKF, UKF
  • Smoother, MAP, Maximum Likelihood, EM, KF parameter estimation
  • Particle Filters
  • Partially Observable MDPs
  • Imitation Learning
  • RL : Policy Gradients, Off-policy RL, Model-based RL
  • Physics Simulation

🎥 YouTube Playlist (24 lectures) : https://youtube.com/playlist?list=PLwRJQ4m4UJjNBPJdt8WamRAt4XKc639wF&si=LrZXaiXafs6Qj07x

Statistical Machine Learning

Carnegie Mellon University, Prof. Larry Wasserman, 2016

image

  • Function Spaces
  • Concentration of Measure
  • Linear Regression
  • Non-Parametric Regression
  • Trend Filtering
  • Linear Classification
  • Non-Parametric Classification
  • Minimax Theory
  • Non-Parametric Bayes
  • Boosting
  • Clustering
  • Graphical Models
  • Dimension Reduction
  • Random Matrix Theory
  • Differential Privacy

🎥 YouTube Playlist (24 lectures) : https://youtube.com/playlist?list=PLTB9VQq8WiaCBK2XrtYn5t9uuPdsNm7YE&si=T5N31V-7ZPA_onXN

Optimization Methods for Machine Learning and Engineering

KIT(2020), Dr. Julius Pfrommer

image

  • Introduction, Convexity and Gradient Descent
  • Newton’s Method
  • Inequality Constrained Optimization
  • Equality Constrained Optimization
  • Applications: Mechanical Design, Model-Predictive Control, Optimization in Finance
  • Automatic Differentiation and Neural Networks
  • Vector Spaces, Norms and the Projection Theorem
  • Fast First-Order Optimization
  • Duality and Primal-Dual Algorithms
  • SVM and the Reproducing Kernel Hilbert Space
  • Conic Programming
  • Alternating Methods and the EM Algorithm
  • Applications: Graph Problems, Computer Vision and Generalized Low-Rank Models
  • Gradient-Free and Non-Convex Optimization

🎥 Lectures on YouTube : https://youtube.com/playlist?list=PLdkTDauaUnQpzuOCZyUUZc0lxf4-PXNR5&si=x3fYVDBXH7Y4TAmY

Probabilistic Reasoning & Machine Learning

TU Dortmund, Prof. Stefan Harmeling, 2022

image

🎥 Video lectures (28 sessions): https://youtube.com/playlist?list=PLzrCXlf6ypbzDYKDchKfM-I9s20mFCL0q&si=IuKihyN1QdWIuY8d

Parallel Computing and Scientific Machine Learning

MIT, Dr. Chris Rackauckas, 2021

image

  • Getting Started with Julia
  • Optimizing Serial Code
  • Physics-Informed Neural Networks
  • Introduction to Discrete Dynamical Systems
  • The Basics of Single Node Parallel Computing
  • Styles of Parallelism
  • Ordinary Differential Equations
  • Forward-Mode Automatic Differentiation
  • Solving Stiff Ordinary Differential Equations
  • Basic Parameter Estimation, Reverse-Mode AD, and Inverse Problems
  • Differentiable Programming and Neural Differential Equations
  • MPI for Distributed Computing
  • Mathematics of ML and HPC
  • GPU Computing
  • Partial Differential Equations and Convolutional Neural Networks
  • Probabilistic Programming
  • Global Sensitivity Analysis
  • Code Profiling and Optimization
  • Uncertainty Programming and Generalized Uncertainty Quantification

🎥 Video Lectures: https://youtube.com/playlist?list=PLCAl7tjCwWyGjdzOOnlbGnVNZk0kB8VSa&si=-5MJhyhshyQ1SpcQ
📔 Lecture notes as an online book: https://book.sciml.ai/

Machine Learning and Bayesian Inference

University of Cambridge, Dr. Sean Holden

image

YouTube Playlist(15 lectures): https://youtube.com/playlist?list=PLdLk2RYEiAhp9Slj6FLCMXUv7Fi3V_Y&si=E-A3Igj-C3xrQJU2

Spectral Graph Theory

Iowa State University (2017), Prof. Steve Butler

image

🎥 Lectures (32 Sessions): https://www.youtube.com/playlist?list=PLi4h0n4UP8d9VGPqO8vLQga9ZApO65TLW
📔 Textbook: An Introduction to the Theory of Graph Spectra

Algorithmic Game Theory

Stanford, Prof. Tim Roughgarden

image

  • Mechanism Design Basics
  • Myerson's Lemma
  • Algorithmic Mechanism Design
  • Revenue-Maximizing Auctions
  • Simple Near-Optimal Auctions
  • VCG Mechanism
  • Spectrum Auctions
  • Beyond Quasi-Linearity
  • Kidney Exchange, Stable Matching
  • Selfish Routing and the POA
  • Network Over-Provisioning
  • Hierarchy of Equilibrium Concepts
  • Smooth Games
  • Best-Case and Strong Nash Equilibria
  • Best-Response Dynamics
  • No-Regret Dynamics
  • Swap Regret; Minimax
  • Pure NE and PLS-Completeness
  • Mixed NE and PPAD-Completeness

🎥 Lectures: https://youtube.com/playlist?list=PLEGCF-WLh2RJBqmxvZ0ie-mleCFhi2N4&si=7r52RRF8miNr_N2

Advanced Mechanism Design

Stanford, Prof. Tim Roughgarden

image

  • Ascending and Ex Post Incentive Compatible Mechanisms
  • Unit-Demand Bidders and Walrasian Equilibria
  • The Crawford-Knoer Auction
  • The Clinching Auction
  • The Gross Substitutes Condition
  • Gross Substitutes-Welfare Maximization in Polynomial Time
  • Submodular Valuations
  • MIR and MIDR Mechanisms
  • MIDR Mechanisms via Scaling Algorithms
  • Coverage Valuations and Convex Rounding
  • Undominated Implementations and the Shrinking Auction
  • Bayesian Incentive-Compatibility
  • Black Box Reductions
  • The Price of Anarchy in Simple Auctions
  • The Price of Anarchy of Bayes-Nash Equilibria
  • The Price of Anarchy in First-Price Auctions
  • Demand Reduction in Multi-Unit Auctions Revisited
  • Beyond Smoothness and XOS Valuations
  • Multi-Parameter Revenue-Maximization
  • Interim Rules and Border’s Theorem
  • Characterization of Revenue-Maximizing Auctions

🎥 Lectures: https://youtube.com/playlist?list=PLEGCF-WLh2RI77PL4gwLld_OU9Zh3TCX9

Algorithms and Uncertainty

Prof. Thomas Kesselheim

image

  • Online Algorithms
  • Online Learning Algorithms and Online Convex Optimization
  • Markov Decision Processes
  • Stochastic and Robust Optimization

🎥 Lectures: https://www.youtube.com/playlist?list=PLyzcvvgje7aDZRFMJZgaVgOW5t5KLvD1-

Information Geometry & its Applications

University of California, Prof. Melvin Leok, San Diego, 2022

image

🎥 Lectures: https://www.youtube.com/playlist?list=PLHZhjPByiV3L94AeJ9FcK1yrnRDOt3Vit

Advanced Scientific Computing

The University of Iceland, Prof. Ing Morris Riedel

image

High Performance Computing - Parallel Programming with MPI - Parallelization Fundamentals - Advanced MPI Techniques - Parallel Algorithms & Data Structures - Parallel Programming with OpenMP - Hybrid Programming & Patterns - Debugging & Profiling & Performance Analysis - Accelerators & Graphical Processing Units - Parallel & Scalable Machine & Deep Learning - HPC in Health & Neurosciences - Computational Fluid Dynamics & Finite Elements - Systems Biology & Bioinformatics - Molecular Systems & Material Sciences - Terrestrial Systems & Climate

🎥 2024 Lectures (ongoing): https://www.youtube.com/playlist?list=PLmJwSK7qduwVAnNfpueCgQqfchcSIEMg9
🎥 2023 Lectures: https://www.youtube.com/playlist?list=PLmJwSK7qduwUBwrFn3SY8vi4AYa2rVTWH
🎥 2022 Lectures: https://www.youtube.com/playlist?list=PLmJwSK7qduwWyqcSEB45HOyxq--z8njix

Deep Learning in Scientific Computing

ETH Zürich, Prof. Siddhartha Mishra, Dr. Benjamin Moseley, 2023

image

  • Introduction to Deep Learning
  • Physics-Informed Neural Networks
  • Operator Learning
  • Neural Operators
  • Fourier Neural Operators and Convolutional Neural Operators
  • Differentiable Physics

🎥 Course lectures: https://www.youtube.com/playlist?list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm

Topology and Geometry

Prof. Tadashi Tokieda

image

🎥 Lectures: https://www.youtube.com/playlist?list=PLTBqohhFNBE_09L0i-lf3fYXF5woAbrzJ

Deep Reinforcement Learning

UC Berkeley, Prof. Sergey Levine

image

In addition to the standard RL topics, the course also includes: - RL and language models - Offline RL - Inverse RL - RL as probabilistic inference - Uncertainty and RL - Transfer learning and meta learning

🎥 Lectures(2021-2023): https://www.youtube.com/playlist?list=PLiWQOsE6TfVYGEGiAOMaOzzv41JfmPs

Information Theory

Harvard, Prof. Gregory Falkovich, 2022

image

🎥 Lectures: https://www.youtube.com/playlist?list=PLDEN2FPNHwVZKAFqfFl1b_NNAESTJwV9o
📔 Textbook (Physical Nature of Information): https://www.weizmann.ac.il/complex/falkovich/sites/complex.falkovich/files/uploads/PNI22.pdf

Bayesian Statistics

Virginia Tech, Prof. Scotland Leman, 2023

image

  • Philosophy: What is probability?
  • Fisher vs Neyman vs Jeffreys.
  • The Likelihood Principle
  • Basic Bayesian constructions: Likelihoods, priors and posteriors
  • Exponential families and conjugate priors
  • Asymptotics, Bayesian t-tests, mixture models, hierarchical modeling, etc..
  • Bayesian sequential updating
  • More on priors: Jeffreys, Reference, Objective, Subjective, etc...
  • Simulation procedures: Gibbs, Metropolis, etc...
  • Model Selection: Theory and Computational Approaches

🎥 Video lectures for the 2023 course and also lectures for the past semesters: https://www.youtube.com/@lemanlectures8611/videos
🎥 First lecture: https://youtu.be/vHAoj0Q5Auw?si=68ymPihUCaAmvvgK

Random Matrices and Machine Learning

Saarland University, Prof. Roland Speicher, 2023

image

🎥 Recorded videos (29 lectures): https://youtube.com/playlist?list=PLY11JnnnTUCabY4nc0hKptrd5qEWtLoo2&si=9HLbybgfW6pBss88

Computational Topology

University of Utah, Prof. Bei Wang, 2021

image

  • Basic concepts (graphs, connected components, topological space, manifold, point cloud samples)
  • Combinatorial structures on point cloud data (simplicial complexes)
  • New techniques in dimension reduction (circular coordinates, etc.)
  • Clustering (topology-based data partition, classification)
  • Homology and persistent homology
  • Topological signatures for classification
  • Structural inference and reconstruction from data
  • Topological algorithms for massive data
  • Deep learning with TDA
  • Multivariate and high-dimensional data analysis
  • Topological data analysis for visualization (vector fields, topological structures)
  • Practical applications of TDA

🎥 Playlist on YouTube (28 Lectures) : https://youtube.com/playlist?list=PLDZ6LA16SDbIvbgmCjcCuTA7mttfXjiec&si=FiadJKIdmKlJUIY7

Optimal Transport

Prof. Brittany Hamfeldt

image

🎥 Video Lectures: https://youtube.com/playlist?list=PLJ6garKOlK2qKVhRm6UwvcQ46wK-ciHbl&si=zeG5RCK_E04SRNww

Group Theory

Prof. Richard Borcherds

image

🎥 Lectures: https://www.youtube.com/@richarde.borcherds7998/playlists

Manifold Learning, Optimization and Information Geometry

Politecnico di Milano 2022

image

🎥 Lectures: https://youtube.com/playlist?list=PLvVaDdaHGtpesn2DHUo6ete-1pPhT1xzj&si=24WgTbFLChWMaJRx

Random Matrix Theory

King's College London, Dr Pierpaolo Vivo

image

🎥 Lectures : https://www.youtube.com/playlist?list=PLyHAvCibkccQEFYXdM6r8WG4GQULRKmRA

Topological Data Analysis

Colorado State University, Henry Adams, 2021

image

🎥 Videos (27 short lectures) : https://www.math.colostate.edu/~adams/teaching/dsci475spr2021/

Matrix Calculus for Machine Learning and Beyond

MIT, Prof. Alan Edelman, Prof. Steven G. Johnson, 2023

image

🎥 YouTube (8 lectures): https://youtube.com/playlist?list=PLUl4u3cNGP62EaLLH92E_VCN4izBKK6OE&si=rNoLocGXOEXBQjMH

Probabilistic Machine Learning

University of Tübingen, Dr. Philipp Hennig, 2023

image

  • Reasoning Under Uncertainty
  • Continuous Random Variables
  • Exponential Families
  • Gaussian Probability Distributions
  • Parametric Regression
  • Gaussian Processes
  • Understanding Gaussian Processes
  • GP Regression
  • Understanding Kernels and Gaussian Processes
  • The role of Linear Algebra in Gaussian Processes
  • Computation and Inference
  • Logistic Regression
  • GP Classification
  • Deep Learning
  • Probabilistic Deep Learning
  • Uncertainty in Deep Learning
  • Uses of Uncertainty for Deep Learning
  • Gauss-Markov Models
  • Parameter Inference
  • Variational Inference

🎥 Lectures (25 lectures): https://youtube.com/playlist?list=PL05umP7R6ij2YE8rRJSb-olDNbntAQBx&si=qivnfDBYjFOu1TOk
📔 Slides: https://github.com/philipphennig/Probabilistic
ML

Discrete Differential Geometry

Carnegie Mellon Universit

image

🎥 Lectures : https://www.youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS

Applied Numerical Algorithms

MIT, Prof. Justin Solomon, 2023

image

🎥 Lectures : https://www.youtube.com/watch?v=Xt4p5gk24ss

Shape Analysis

MIT, Prof. Justin Solomon

image

🎥 Lectures : https://www.youtube.com/watch?v=VjyBp6PrvB4

Owner

  • Name: Amirabbas Asadi
  • Login: amirabbasasadi
  • Kind: user
  • Location: Iran

Independent AI Researcher

GitHub Events

Total
  • Issues event: 2
  • Watch event: 116
  • Issue comment event: 2
  • Push event: 7
  • Public event: 1
  • Pull request event: 2
  • Fork event: 11
Last Year
  • Issues event: 2
  • Watch event: 116
  • Issue comment event: 2
  • Push event: 7
  • Public event: 1
  • Pull request event: 2
  • Fork event: 11

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 22
  • Total Committers: 2
  • Avg Commits per committer: 11.0
  • Development Distribution Score (DDS): 0.364
Past Year
  • Commits: 22
  • Committers: 2
  • Avg Commits per committer: 11.0
  • Development Distribution Score (DDS): 0.364
Top Committers
Name Email Commits
Amirabbas Asadi a****5@g****m 14
Ramtin Moslemi 7****i 8

Issues and Pull Requests

Last synced: 8 months ago

All Time
  • Total issues: 1
  • Total pull requests: 1
  • Average time to close issues: 4 days
  • Average time to close pull requests: 43 minutes
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 1.0
  • Average comments per pull request: 1.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 1
  • Average time to close issues: 4 days
  • Average time to close pull requests: 43 minutes
  • Issue authors: 1
  • Pull request authors: 1
  • Average comments per issue: 1.0
  • Average comments per pull request: 1.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • RamtinMoslemi (1)
Pull Request Authors
  • RamtinMoslemi (2)
Top Labels
Issue Labels
Pull Request Labels