https://github.com/amirzenoozi/yolo-tf2-object-detection
Object Detection on Image and Video Based on YOLO Model
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.4%) to scientific vocabulary
Keywords
Repository
Object Detection on Image and Video Based on YOLO Model
Basic Info
Statistics
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
- Releases: 1
Topics
Metadata Files
README.md
YOLO Object Detection 🏷️
We Use Pretrained YOLO Model to Detect Objects
Requierments 📦
bash
pip install -r requirements.txt
Donwload and Convert pre-trained YOLO-v3 ⏬
```bash
YOLO V3
- wget https://pjreddie.com/media/files/yolov3.weights -O models/yolov3.weights
- python converttocheckpoints.py --weights ./models/yolov3.weights --output ./checkpoints/yolov3.tf
YOLO-Tiny V3
- wget https://pjreddie.com/media/files/yolov3-tiny.weights -O models/yolov3-tiny.weights
- python convert.py --weights ./models/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --tiny True ```
Video Frame Extractor CLI Options 🎞️
bash
--frame Frame Threshold #default: 1800 (Every Minutes)
--src Video File PATH #default: 'sample.mp4'
You Need to Use This Command:
bash
python frame.py --frame FRAME_TH --src VIDEO_FILE
Live Stream Frame Extractor CLI Options 📺
bash
--frame Frame Threshold #default: 1800 (Every Minutes)
--src Video File PATH #default: ''
--dir Save Frames Folder Name #default: '' | (Auto-Generate UUID4)
You Need to Use This Command:
bash
python live.py --frame FRAME_TH --src STREAM_LINK --dir FOLDER_NAME
if You want to proccess frames during extraction task, you just need to run:
bash
python watcher.py --src FOLDER_NAME
Object Detection 📋
bash
--weights Path To .tf File #default: 'model/model.h5'
--classes Path To Classes File #default: './models/coco.names'
--tiny Use Tiny Model Or Not? #default: False
--num_classes Number Of Classes In The Model #default: 80
--size Resize Images To #default: 416
--image Path To Input Image #default: './data/sample.jpg'
--save Save Or Not #default: False
Then You Just Need To Run This:
```bash
Image
python main.py --image PATHTOIMAGE
Video
python video.py --dir PATHTOFRAMES_DIR ```
Features ✨
- [x] Detect Default COCO Classes
- [x] CLI
- [x] Image Files
- [x] Video Files
- [x] Live Stream
- [ ] Support I18N Classes
- [ ] Telegram Bot
- [ ] Rest API
- [ ] Image Support
- [ ] Video Support
- [ ] GIF Support
Owner
- Name: Amirhossein Douzandeh Zenoozi
- Login: amirzenoozi
- Kind: user
- Location: Bolzano, Italy
- Website: https://amirdouzandeh.me/
- Repositories: 56
- Profile: https://github.com/amirzenoozi
🐍 Python Lover 🧠 AI Student 💻 Front-End Engineer
GitHub Events
Total
Last Year
Issues and Pull Requests
Last synced: 11 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0