HylleraasMD
HylleraasMD: Massively parallel hybrid particle-field molecular dynamics in Python - Published in JOSS (2023)
Science Score: 100.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 6 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
5 of 16 committers (31.3%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Scientific Fields
Repository
Massively parallel hybrid particle-field molecular dynamics in Python.
Basic Info
- Host: GitHub
- Owner: Cascella-Group-UiO
- License: lgpl-3.0
- Language: Python
- Default Branch: main
- Homepage: https://cascella-group-uio.github.io/HyMD/
- Size: 7.52 MB
Statistics
- Stars: 29
- Watchers: 3
- Forks: 9
- Open Issues: 27
- Releases: 16
Topics
Metadata Files
README.md
HylleraasMD (HyMD) is a massively parallel Python package for Hamiltonian hybrid particle-field molecular dynamics (HhPF-MD) simulations of coarse-grained bio- and soft-matter systems.
HyMD can run canonical hPF-MD simulations, or filtered density Hamiltonian hPF (HhPF-MD) simulations [1],[2],[3] with or without explicit PME electrostatic interactions. It includes all standard intramolecular interactions, including stretching, bending, torsional, and combined bending-dihedral potentials. Additionally, topological reconstruction of permanent peptide chain backbone dipoles is possible for accurate recreation of protein conformational dynamics. It can run simulations in constant energy (NVE), constant volume (NVT) [1] or constant pressure (NPT) conditions [4].
HyMD uses the pmesh library for particle-mesh operations, with the PPFT [5] backend for FFTs through the pfft-python bindings. File IO is done via HDF5 formats to allow MPI parallel reads.
If you use HyMD, please cite our paper(s).
User Guide
Detailed installation and user guide, together with comprehensive example simulations are located in the HylleraasMD documentation.
Run simulations by
bash
python3 -m hymd [CONFIGURATION_FILE] [TOPOLOGY_FILE] (--OPTIONAL_ARGS)
Run interactively in Google Colaboratory
A Google Colaboratory jupyter notebook is setup here with a working HyMD fully installed and executable in the browser.
Installation
Non-Python dependencies
HyMD installation requires a working MPI compiler. It is highly recommended to have MPI-enabled HDF5 and h5py for running parallel simulations with HyMD. Install both on Ubuntu with
bash
sudo apt-get update -y
sudo apt-get install -y pkg-config libhdf5-mpi-dev libopenmpi-dev
python3 -m pip uninstall h5py # Remove any serial h5py installation present
CC="mpicc" HDF5_MPI="ON" python3 -m pip install --no-binary=h5py h5py
Note There might be memory leaks if you use OpenMPI <= 4.1.1. See #186 for more details.
Python dependencies
Install HyMD with pip by
bash
python3 -m pip install --upgrade numpy mpi4py cython
python3 -m pip install "pmesh @ git+https://github.com/rainwoodman/pmesh"
python3 -m pip install hymd
pmesh is installed from the GitHub repository because fixes to be compatible with modern NumPy versions were not pushed to PyPI.
See HyMD docs for more information, including install steps for macOS and non-Debian linux distributions.
Run in docker
Alternatively, an up-to-date docker image is available from docker hub
bash
docker pull mortele/hymd
docker run -it mortele/hymd
/app$ python3 -m pip install hymd
/app$
/app$ # Grab example input files
/app$ curl -O https://raw.githubusercontent.com/Cascella-Group-UiO/HyMD-tutorial/main/ideal_chain/ideal_chain.toml
/app$ curl -O https://raw.githubusercontent.com/Cascella-Group-UiO/HyMD-tutorial/main/ideal_chain/ideal_chain.HDF5
/app$
/app$ # Run simulation
/app$ python3 -m hymd ideal_chain.toml ideal_chain.HDF5 --verbose
Run tests
Clone the repository and run tests with pytest
bash
git clone https://github.com/Cascella-Group-UiO/HyMD.git hymd
cd hymd
python3 -m pip install pytest pytest-mpi
pytest
Running MPI enabled pytest tests is simplified with a convenient script
bash
chmod +x pytest-mpi
pytest-mpi -oo -n 2 -ns
Contributions and issues
We welcome contributions to our code and provide a set of guidelines to follow in CONTRIBUTING.md.
To seek support in case of any issues and bugs, we welcome you to post them using the issue tracker.
Please cite our work
You will find information about our publications and archived data since 2023 at the open repository: Publications.
If you use HyMD, please cite:
```bibtex
@article{
LedumHylleraasMDMassivelyparallel2023,
author = {Ledum, Morten and Carrer, Manuel and Sen, Samiran and Li, Xinmeng and Cascella, Michele and Bore, Sigbjørn Løland},
doi = {10.21105/joss.04149},
journal = {Journal of Open Source Software},
month = {apr},
number = {84},
pages = {4149},
title = {{HylleraasMD: Massively parallel hybrid particle-field molecular dynamics in Python}},
url = {https://joss.theoj.org/papers/10.21105/joss.04149},
volume = {8},
year = {2023}
}
@article{ SenHylleraasMD2023, author = {Sen, Samiran and Ledum, Morten and Bore, Sigbjørn Løland and Cascella, Michele}, title = {Soft Matter under Pressure: Pushing Particle–Field Molecular Dynamics to the Isobaric Ensemble}, doi = {10.1021/acs.jcim.3c00186}, journal = {Journal of Chemical Information and Modeling}, month= mar, year = {2023}, volume = {63}, number = {7}, pages = {2207-2217}, URL = {https://doi.org/10.1021/acs.jcim.3c00186}, }
```
References
[1] Ledum, M.; Sen, S.; Li, X.; Carrer, M.; Feng Y.; Cascella, M.; Bore, S. L. HylleraasMD: A Domain Decomposition-Based Hybrid Particle-Field Software for Multi-Scale Simulations of Soft Matter. ChemRxiv 2021
[2] Ledum, M.; Carrer, M.; Sen, S.; Li, X.; Cascella, M.; Bore, S. L. HyMD: Massively parallel hybrid particle-field molecular dynamics in Python. Journal of Open Source Software (JOSS) 2023, 8(84), 2475-9066, 4149.
[3] Bore, S. L.; Cascella, M. Hamiltonian and alias-free hybrid particle–field molecular dynamics. J. Chem. Phys. 2020, 153, 094106.
[4] Sen, S.; Ledum, M.; Bore, S. L.; Cascella, M. Soft Matter under Pressure: Pushing Particle–Field Molecular Dynamics to the Isobaric Ensemble. J Chem Inf Model 2023, 63(7), 1549-9596.
[5] Pippig, M. PFFT: An extension of FFTW to massively parallel architectures. SIAM J. Sci. Comput. 2013, 35, C213–C236.
Owner
- Name: Cascella-Group-UiO
- Login: Cascella-Group-UiO
- Kind: organization
- Repositories: 7
- Profile: https://github.com/Cascella-Group-UiO
JOSS Publication
HylleraasMD: Massively parallel hybrid particle-field molecular dynamics in Python
Authors
Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
Tags
chemistry physics molecular dynamics coarse-grained hybrid particle-fieldCitation (CITATION.cff)
cff-version: "1.2.0"
authors:
- family-names: Ledum
given-names: Morten
orcid: "https://orcid.org/0000-0003-4244-4876"
- family-names: Carrer
given-names: Manuel
orcid: "https://orcid.org/0000-0002-8777-4310"
- family-names: Sen
given-names: Samiran
orcid: "https://orcid.org/0000-0002-1922-7796"
- family-names: Li
given-names: Xinmeng
orcid: "https://orcid.org/0000-0002-6863-6078"
- family-names: Cascella
given-names: Michele
orcid: "https://orcid.org/0000-0003-2266-5399"
- family-names: Bore
given-names: Sigbjørn Løland
orcid: "https://orcid.org/0000-0002-8620-4885"
contact:
- family-names: Ledum
given-names: Morten
orcid: "https://orcid.org/0000-0003-4244-4876"
doi: 10.5281/zenodo.7839898
message: If you use this software, please cite our article in the
Journal of Open Source Software.
preferred-citation:
authors:
- family-names: Ledum
given-names: Morten
orcid: "https://orcid.org/0000-0003-4244-4876"
- family-names: Carrer
given-names: Manuel
orcid: "https://orcid.org/0000-0002-8777-4310"
- family-names: Sen
given-names: Samiran
orcid: "https://orcid.org/0000-0002-1922-7796"
- family-names: Li
given-names: Xinmeng
orcid: "https://orcid.org/0000-0002-6863-6078"
- family-names: Cascella
given-names: Michele
orcid: "https://orcid.org/0000-0003-2266-5399"
- family-names: Bore
given-names: Sigbjørn Løland
orcid: "https://orcid.org/0000-0002-8620-4885"
date-published: 2023-04-22
doi: 10.21105/joss.04149
issn: 2475-9066
issue: 84
journal: Journal of Open Source Software
publisher:
name: Open Journals
start: 4149
title: "HylleraasMD: Massively parallel hybrid particle-field
molecular dynamics in Python"
type: article
url: "https://joss.theoj.org/papers/10.21105/joss.04149"
volume: 8
title: "HylleraasMD: Massively parallel hybrid particle-field molecular
dynamics in Python"
GitHub Events
Total
- Watch event: 2
- Fork event: 1
Last Year
- Watch event: 2
- Fork event: 1
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Morten Ledum | m****m@g****m | 288 |
| Henrique Musseli Cezar | h****i@g****m | 216 |
| Manuel Carrer | m****a@k****o | 156 |
| Samiran Sen | s****n@k****o | 140 |
| Lasse Steinnes | l****3@g****m | 37 |
| Sigbjørn Bore | s****o@s****o | 29 |
| xinmeng2020 | x****0@g****m | 28 |
| Sigbjørn Bore | s****o@l****o | 16 |
| sigbjorn.loland.bore@gmail.com | s****e@g****m | 10 |
| Samiran Sen | s****3@e****o | 7 |
| Yu Feng | r****n@g****m | 5 |
| Samiran Sen | s****3@e****o | 5 |
| Samiran Sen | s****3@l****o | 5 |
| Samiran Sen | s****3@l****o | 4 |
| Samiran Sen | s****3@S****l | 3 |
| Morten Ledum | m****m@e****o | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 56
- Total pull requests: 52
- Average time to close issues: 5 months
- Average time to close pull requests: about 1 month
- Total issue authors: 10
- Total pull request authors: 4
- Average comments per issue: 1.91
- Average comments per pull request: 0.9
- Merged pull requests: 46
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: 19 minutes
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- mortele (18)
- hmcezar (12)
- Lun4m (9)
- samiransen23 (5)
- yhtang (3)
- blakeaw (3)
- xinmeng2020 (2)
- sigbjobo (1)
- lasse-steinnes (1)
- kiranvad (1)
Pull Request Authors
- hmcezar (28)
- Lun4m (10)
- mortele (8)
- samiransen23 (7)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 28 last-month
- Total dependent packages: 0
- Total dependent repositories: 1
- Total versions: 15
- Total maintainers: 1
pypi.org: hymd
Massively parallel hybrid particle-field MD
- Homepage: https://github.com/Cascella-Group-UiO/HyMD
- Documentation: https://hymd.readthedocs.io/
- License: LGPLv3
-
Latest release: 2.2.0
published about 2 years ago
Rankings
Maintainers (1)
Dependencies
- matplotlib *
- numpy *
- numpydoc *
- sphinx *
- sphinx-panels *
- sphinx-rtd-theme *
- sphinx-tabs *
- sphinxcontrib.bibtex *
- cython *
- h5py *
- mpi4py *
- mpsort *
- networkx *
- numpy *
- pfft-python *
- pmesh *
- sympy *
- tomli *
- cython *
- h5py *
- mpi4py *
- mpsort *
- networkx *
- numpy *
- pfft-python *
- pmesh *
- sympy *
- tomli *
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- codecov/codecov-action v2 composite
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- actions/upload-artifact v1 composite
- openjournals/openjournals-draft-action master composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- ubuntu latest build