pommesdata

A full-featured transparent data preparation routine from raw data to POMMES model inputs

https://github.com/pommes-public/pommesdata

Science Score: 59.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    1 of 3 committers (33.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.6%) to scientific vocabulary

Keywords

data opensource power raw-data transparent
Last synced: 6 months ago · JSON representation

Repository

A full-featured transparent data preparation routine from raw data to POMMES model inputs

Basic Info
  • Host: GitHub
  • Owner: pommes-public
  • License: other
  • Language: Jupyter Notebook
  • Default Branch: dev
  • Homepage:
  • Size: 82.7 MB
Statistics
  • Stars: 2
  • Watchers: 1
  • Forks: 2
  • Open Issues: 2
  • Releases: 0
Topics
data opensource power raw-data transparent
Created over 4 years ago · Last pushed almost 2 years ago
Metadata Files
Readme License Citation

README.md

pommesdata

A full-featured transparent data preparation routine from raw data to POMMES model inputs

This is the data preparation routine of the fundamental power market model POMMES (POwer Market Model of Energy and reSources).
Please navigate to the section of interest to find out more.

Contents

Introduction

POMMES itself is a cosmos consisting of a dispatch model, a data preparation routine (stored in this repository and described here) and an investment model for the German wholesale power market. The model was originally developed by a group of researchers and students at the chair of Energy and Resources Management of TU Berlin and is now maintained by a group of alumni and open for other contributions.

If you are interested in the actual dispatch or investment model, please find more information here: - pommesdispatch: A bottom-up fundamental power market model for the German electricity sector - pommesinvest: A multi-period integrated investment and dispatch model for the German power sector (upcoming).

Documentation

The data preparation is mainly carried out in this jupyter notebook. The data sources used as well as the calculation and transformation steps applied are described in a transparent manner. In addition to that, there is a documentation of pommesdata on readthedocs. This in turn contains a documentation of the functions and classes used for data preparation.

Installation and usage

There are two use cases for using pommesdata: 1. Using readily prepared output data sets as pommesdispatch or pommesinvest inputs 2. Understanding and manipulating the data prep process (inspecting / developing)

If you are only interested in the readily prepared data sets (option 1), you can obtain them from zenodo and download it here: https://zenodo.org/

If you are interested in understanding the data preparation process itself or if you wish to include own additions, changes or assumptions, you can fork and then clone the repository, in order to copy the files locally by typing

git clone https://github.com/pommes-public/pommesdata.git

After cloning the repository, you have to install the required dependencies. Make sure you have conda installed as a package manager. If not, you can download it here. Open a command shell and navigate to the folder where you copied the environment to. Use the following command to install dependencies

conda env create -f pommesdata_explicit.yml Activate your environment by typing conda activate pommesdata_explicit

Note: Dependencies have not been regularly updated. Thus, use the listed explicit dependencies from pommesdata_explicit.yml for now and not the environment.yml file.

Contributing

Every kind of contribution or feedback is warmly welcome.
We use the GitHub issue management as well as pull requests for collaboration.

We try to stick to the PEP8 coding standards.

The jupyter notebook for the data preparation does not (necessarily have to) meet PEP8 standards, though readability should be made sure.

Authors

  • Authors of pommesdata are Johannes Kochems and Yannick Werner. It is maintained by Johannes Kochems.
  • Florian Maurer contributed to the source code by providing a bug fix.
  • All people mentioned below contributed to early-stage versions or predecessors of POMMES or ideally supported it.

List of contributors to POMMES

The following people have contributed to POMMES. Most of these contributions belong to early-stage versions and are not part of the actual source code. Nonetheless, all contributions shall be acknowledged and the full list is provided for transparency reasons.

The main contributors are stated on top, the remainder is listed in alphabetical order.

| Name | Contribution | |--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Johannes Kochems | major development & conceptualization
conceptualization, development of all investment-related parts; development of main data preparation routines (esp. future projection for all components, RES tender data and LCOE estimates, documentation), architecture, publishing process, maintenance | | Yannick Werner | major development & conceptualization
conceptualization, development of main data preparation routines (status quo data for all components, detailed RES, interconnector and hydro data), architecture | | Benjamin Grosse | data collection for conventional power plants in early development stage, ideal support and conceptionel counseling | | Carla Spiller | data collection for conventional power plants in early stage development as an input to pommesdata; co-development of rolling horizon dispatch modelling in predecessor of pommesdispatch | | Christian Fraatz | data collection for conventional power plants in early stage development as an input to pommesdata | | Conrad Nicklisch | data collection for RES in early stage development as an input to pommesdata | | Daniel Peschel | data collection on CHP power plants as an input to pommesdata | | Dr. Johannes Giehl | conceptionel support and research of data licensing; conceptionel support for investment modelling in pommesinvest | | Dr. Paul Verwiebe | development of small test models as a predecessor of POMMES | | Fabian Büllesbach | development of a predecessor of the rolling horizon modeling approach in pommesdispatch | | Flora von Mikulicz-Radecki | extensive code and functionality testing in an early development stage for predecessors of pommesdispatch and pommesinvest | | Florian Maurer | support with / fix for python dependencies | | Hannes Kachel | development and analysis of approaches for complexity reduction in a predecessor of pommesinvest | | Julian Endres | data collection for costs and conventional power plants in early stage development | | Julien Faist | data collection for original coal power plant shutdown and planned installation of new power plants for pommesdata; co-development of a predecessor of pommesinvest | | Leticia Encinas Rosa | ata collection for conventional power plants in early stage development as an input to pommesdata | | Prof. Dr.-Ing. Joachim Müller-Kirchenbauer | funding, enabling and conceptual support | | Robin Claus | data collection for RES in early stage development as an input to pommesdata | | Sophie Westphal | data collection for costs and conventional power plants in early stage development as an input for pommesdata | | Timona Ghosh | data collection for interconnector data as an input to pommesdata |

Citing

Data sets created with pommesdata are shared at zenodo. If you use these, please refer to the citation information given at zenodo.

If you are using pommesdata for your own analyses, we recommend citing as:
Kochems, J. & Wener, Y. (2024): pommesdata. A full-featured transparent data preparation routine from raw data to POMMES model inputs. https://github.com/pommes-public/pommesdata, accessed YYYY-MM-DD.

We furthermore recommend naming the version tag or the commit hash used for the sake of transparency and reproducibility.

Also see CITATION.cff for citation information. Licensing information stated in the CITATION.cff is only applicable for the code itself, see license.

License

Licensing for the code - in the following referred to as software - and the input data used differs. For the licensing of the data, please see the detailed list of data sets below.

Software (code)

Copyright 2024 pommes developer group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Data (input data)

The following table contains the primary data sources used to create data sets used for POMMES models. The licensing of the different sources differs and the table should provide an overview over the licences used. Thus, we cannot publish all the data under an open license, such as a Creative Commons Attribution license. Please be aware that some data might be subject to copyright.

| institution | data set | license | download link | | ---- | ---- | ---- | ---- | | OPSD | data package conventional power plants | MIT License for software; for dataset-specific license see hyperlink | https://doi.org/10.25832/conventionalpowerplants/2018-12-20 | ÜNB / BNetzA | power plant list | free to use, license-free according to §5 Abs. 1 UrhG | https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/Kraftwerksliste%C3%9CNBEntwurfSzenariorahmen2030V2019200.pdf | FZJ / KIT / FIAS | FRESNA (PyPSA-EUR) PP matching | GPLv3 for software, for dataset-specific license see hyperlink | https://doi.org/10.5281/zenodo.3358985 | tmrowco | bidding zone geometries | MIT License | https://github.com/tmrowco/electricitymap-contrib/pull/1383 | UBA | new-built power plants | usage of data accordant to § 12a EGovG permitted | https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/4tabgenehmigte-ingenehmigung-kraftwerksprojekte2019-04-04.pdf | BDEW | new-built power plants | All rights reserved | https://www.bdew.de/media/documents/PI20190401BDEW-Kraftwerksliste.pdf | BNetzA | new-built & decommissioned power plants | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html | Energie SaarLorLux | new-built power plant | All rights reserved | https://www.energie-saarlorlux.com/unternehmen/mehr-gutes-klima/unsere-co2-projekte/ | ENTSOE | new-built power plants | CC BY 4.0 | https://tyndp.entsoe.eu/maps-data | BNetzA | threshold for new-built power plants | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/UnternehmenInstitutionen/Versorgungssicherheit/BerichteFallanalysen/BNetzANetzstabilitaetsanlagen13k.pdf?blob=publicationFile&v=3 | DIW | efficiency estimates for power plants | All rights reserved | https://www.diw.de/documents/publikationen/73/diw01.c.440963.de/diwdatadoc2014-072.pdf | BNetzA | power plants shutdown | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/Versorgungssicherheit/Erzeugungskapazitaeten/KWSAL/KWSAL | juris | nuclear power plants shutdown | free to use, license-free according to §5 Abs. 1 UrhG | https://www.gesetze-im-internet.de/atg/ | juris | coal power plants shutdown | free to use, license-free according to §5 Abs. 1 UrhG | https://www.gesetze-im-internet.de/kvbg/index.html | KWSB | coal power plants shutdown | CC BY-ND 3.0 DE | https://www.bmwi.de/Redaktion/DE/Downloads/A/abschlussbericht-kommission-wachstum-strukturwandel-und-beschaeftigung.pdf?blob=publicationFile | ENTSOE | Actual Generation per Generation Unit | Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs | https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show | ENTSOE | Water Reservoirs and Hydro Storage Plants | Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs | https://transparency.entsoe.eu/generation/r2/waterReservoirsAndHydroStoragePlants/show | ENTSOE | Actual Generation per Production Type | Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs | https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show | UBA | specific emission factors | Use pursuant to § 12a EGovG for pre-calculations | https://www.umweltbundesamt.de/publikationen/entwicklung-der-spezifischen-kohlendioxid-6 | OPSD | time series data | MIT License for software; for dataset-specific license see hyperlink | https://data.open-power-system-data.org/timeseries/2020-10-06 | ÜNB | Anlagenstammdaten | data owned by the German TSO | https://www.netztransparenz.de/EEG/Anlagenstammdaten | ÜNB | EEG-Bewegungsdaten zur Jahresabrechnung 2017 | data owned by the German TSO | https://www.netztransparenz.de/EEG/Jahresabrechnungen | IRENA | installed RES capacities | All rights reserved, data used for pre-calculations | https://www.irena.org/Statistics/Download-Data | ENTSO-E | Installed Capacity per Production Type | Use pursuant to Article 5 of the Terms & Conditions of ENTSO-E; data owned by the specific TSOs | https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show | Prognos et al. | study on RES capacities for DE | All rights reserved, data used for pre calculations | https://www.agora-energiewende.de/veroeffentlichungen/klimaneutrales-deutschland/ | BNetzA | RES tender results solarPV | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html | BNetzA | RES tender results wind onshore | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/Ausschreibungen/WindOnshore/BeendeteAusschreibungen/BeendeteAusschreibungennode.html | BNetzA | RES tender results common tenders | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/Ausschreibungen/WindOnshore/BeendeteAusschreibungen/BeendeteAusschreibungennode.html | BNetzA | RES tender results offshore | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1GZ/BK6-GZ/2017/BK6-17-001/ErgebnisseersteAusschreibung.pdf?blob=publicationFile&v=3 | BNetzA | RES tender results offshore | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1GZ/BK6-GZ/2018/BK6-18-001/Ergebnissezweiteausschreibung.pdf?blob=publicationFile&v=3 | BNetzA | solarPV installations (and remuneration) | free to use, license-free according to §5 Abs. 1 UrhG | https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstitutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEGRegisterdaten/ArchivDatenMeldgn/ArchivDatenMeldgnnode.html | ÜNB | capacity balance | All rights reserved, data used for pre-calculations | https://www.netztransparenz.de/portals/1/BerichtzurLeistungsbilanz2019.pdf | DIW | fuel costs uranium 2017 | All rights reserved | https://www.diw.de/documents/publikationen/73/diw01.c.440963.de/diwdatadoc2014-072.pdf | DIW | operation costs | All rights reserved | https://www.diw.de/documents/publikationen/73/diw01.c.440963.de/diwdatadoc2014-072.pdf | Öko Institut | fuel costs lignite 2017 | All rights reserved | https://www.oeko.de/oekodoc/1995/2014-015-de.pdf | Destatis | fuel costs hardcoal 2017 | CC BY 2.0 DE | https://www-genesis.destatis.de/genesis/online?&sequenz=tabelleErgebnis&selectionname=43511-0001#abreadcrumb | BAFA | fuel costs natural gas 2017 | CC BY-ND 3.0 DE | https://www.bafa.de/SharedDocs/Downloads/DE/Energie/egasaufkommenexport_1991.html | BMWI | fuel costs heating oil 2017 | CC BY-ND 3.0 DE | https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html | r2b | transport costs | CC BY-ND 3.0 DE | https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/definition-und-monitoring-der-versorgungssicherheit-an-den-europaeischen-strommaerkten.pdf?blob=publicationFile&v=18 | Fraunhofer ISI | operation costs | All rights reserved | https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018ISEStudieStromgestehungskostenErneuerbare_Energien.pdf

Prepared data sets (data sets created with pommesdata)

The data is provided with no license. Please refer to the above licensing information.

Owner

  • Name: pommes-public
  • Login: pommes-public
  • Kind: organization
  • Location: Germany

POMMES - a cosmos for bottom-up linear fundamental power market modeling

GitHub Events

Total
Last Year

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 265
  • Total Committers: 3
  • Avg Commits per committer: 88.333
  • Development Distribution Score (DDS): 0.117
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Johannes Kochems j****s@w****e 234
Johannes Kochems j****s@d****e 24
Yannick Werner y****r@g****t 7
Committer Domains (Top 20 + Academic)
gmx.net: 1 dlr.de: 1

Issues and Pull Requests

Last synced: 9 months ago

All Time
  • Total issues: 51
  • Total pull requests: 49
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 16 days
  • Total issue authors: 2
  • Total pull request authors: 2
  • Average comments per issue: 0.65
  • Average comments per pull request: 0.37
  • Merged pull requests: 46
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • jokochems (47)
  • Mikalls (1)
Pull Request Authors
  • jokochems (48)
  • maurerle (1)
Top Labels
Issue Labels
enhancement (20) bug (11) improvement (6) hotfix (1)
Pull Request Labels
enhancement (17) hotfix (7) update (1) improvement (1) bug (1)

Dependencies

environment.yml conda
  • geopandas
  • ipython
  • jupyterlab
  • matplotlib
  • nodejs
  • notebook
  • numpy
  • openpyxl
  • pandas
  • pip
  • python 3.8.*
  • scikit-learn
  • statsmodels