yolov5customdataset
This repository demonstrates how to use YOLOv5 for object detection on a custom dataset. It includes scripts and instructions for preparing the dataset, training the model, and evaluating its performance.
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.4%) to scientific vocabulary
Keywords
Repository
This repository demonstrates how to use YOLOv5 for object detection on a custom dataset. It includes scripts and instructions for preparing the dataset, training the model, and evaluating its performance.
Basic Info
Statistics
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 2
- Releases: 0
Topics
Metadata Files
README.md
YOLOv5 Custom Dataset Application
This repository contains my work on using the YOLOv5 object detection model on a custom dataset. The original YOLOv5 repository by Ultralytics can be found here.
Overview
YOLOv5 is a state-of-the-art object detection model that provides excellent accuracy and performance. This project demonstrates how to train YOLOv5 on a custom dataset and evaluate its performance.
Features
- Clone of the original YOLOv5 repository.
- Training of YOLOv5 on a custom dataset.
- Evaluation of the trained model on a custom test set.
- Instructions and scripts for reproducing the results.
Installation
Clone this repository: ```bash git clone https://github.com/your-username/YOLOV5CustomDataset.git cd your-repo-name
Install the requirements ```bash pip install -r requirements.txt
Preparing the Custom Dataset ```bash data/ ├── mycustomdataset/ │ ├── images/ │ │ ├── train/ │ │ │ ├── img1.jpg │ │ │ ├── img2.jpg │ │ │ └── ... │ │ ├── val/ │ │ │ ├── img1.jpg │ │ │ ├── img2.jpg │ │ │ └── ... │ │ ├── test/ │ │ │ ├── img1.jpg │ │ │ ├── img2.jpg │ │ │ └── ... │ ├── labels/ │ │ ├── train/ │ │ │ ├── img1.txt │ │ │ ├── img2.txt │ │ │ └── ... │ │ ├── val/ │ │ │ ├── img1.txt │ │ │ ├── img2.txt │ │ │ └── ... │ │ ├── test/ │ │ │ ├── img1.txt │ │ │ ├── img2.txt │ │ │ └── ...
Create a dataset configuration file mycustomdataset.yaml ```bash train: data/mycustomdataset/images/train val: data/mycustomdataset/images/val test: data/mycustomdataset/images/test
nc: 2 # number of classes names: ['class1', 'class2'] # list of class names
- Training Model To train YOLOv5 on your custom dataset, run: ```bash python train.py --img 640 --batch 16 --epochs 100 --data data/mycustomdataset.yaml --weights yolov5s.pt
Testing Model To evaluate the trained model on the test set, run: ```bash python val.py --data data/mycustomdataset.yaml --weights runs/train/exp/weights/best.pt --img 640 --task test
Results The training and evaluation results, including loss curves and other metrics, can be found in the runs/ directory.
Acknowledgements
The original YOLOv5 repository: Ultralytics YOLOv5
Owner
- Name: Md Tanvir Islam
- Login: tanvirnwu
- Kind: user
- Location: Suwon, South Korea
- Website: https://scholar.google.com/citations?user=UvINe-sAAAAJ&hl=en&authuser=1
- Repositories: 1
- Profile: https://github.com/tanvirnwu
Masters student at Sungkyunkwan University (SKKU), South Korea
Citation (CITATION.cff)
cff-version: 1.2.0
preferred-citation:
type: software
message: If you use YOLOv5, please cite it as below.
authors:
- family-names: Jocher
given-names: Glenn
orcid: "https://orcid.org/0000-0001-5950-6979"
title: "YOLOv5 by Ultralytics"
version: 7.0
doi: 10.5281/zenodo.3908559
date-released: 2020-5-29
license: AGPL-3.0
url: "https://github.com/ultralytics/yolov5"
GitHub Events
Total
- Watch event: 2
Last Year
- Watch event: 2
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 0
- Total pull requests: 8
- Average time to close issues: N/A
- Average time to close pull requests: 29 days
- Total issue authors: 0
- Total pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 2.5
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 8
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
- dependabot[bot] (8)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/checkout v4 composite
- actions/setup-python v5 composite
- slackapi/slack-github-action v1.26.0 composite
- contributor-assistant/github-action v2.4.0 composite
- actions/checkout v4 composite
- github/codeql-action/analyze v3 composite
- github/codeql-action/autobuild v3 composite
- github/codeql-action/init v3 composite
- actions/checkout v4 composite
- docker/build-push-action v5 composite
- docker/login-action v3 composite
- docker/setup-buildx-action v3 composite
- docker/setup-qemu-action v3 composite
- ultralytics/actions main composite
- actions/first-interaction v1 composite
- actions/checkout v4 composite
- nick-invision/retry v3 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- actions/stale v9 composite
- pytorch/pytorch 2.0.0-cuda11.7-cudnn8-runtime build
- gcr.io/google-appengine/python latest build
- matplotlib >=3.3.0
- numpy >=1.22.2
- opencv-python >=4.6.0
- pandas >=1.1.4
- pillow >=7.1.2
- psutil *
- py-cpuinfo *
- pyyaml >=5.3.1
- requests >=2.23.0
- scipy >=1.4.1
- seaborn >=0.11.0
- thop >=0.1.1
- torch >=1.8.0
- torchvision >=0.9.0
- tqdm >=4.64.0
- ultralytics >=8.1.47
- PyYAML >=5.3.1
- gitpython >=3.1.30
- matplotlib >=3.3
- numpy >=1.23.5
- opencv-python >=4.1.1
- pandas >=1.1.4
- pillow >=10.3.0
- psutil *
- requests >=2.23.0
- scipy >=1.4.1
- seaborn >=0.11.0
- setuptools >=65.5.1
- thop >=0.1.1
- torchvision >=0.9.0
- tqdm >=4.64.0
- ultralytics >=8.0.232
- wheel >=0.38.0
- Flask ==2.3.2
- gunicorn ==22.0.0
- pip ==23.3
- werkzeug >=3.0.1