Giga Connectome

Giga Connectome: a BIDS-app for time series and functional connectome extraction - Published in JOSS (2025)

https://github.com/bids-apps/giga_connectome

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 11 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Scientific Fields

Medicine Life Sciences - 84% confidence
Artificial Intelligence and Machine Learning Computer Science - 83% confidence
Mathematics Computer Science - 63% confidence
Last synced: 4 months ago · JSON representation ·

Repository

generate connectome from fMRIPrep outputs

Basic Info
Statistics
  • Stars: 10
  • Watchers: 3
  • Forks: 9
  • Open Issues: 21
  • Releases: 2
Created about 3 years ago · Last pushed 5 months ago
Metadata Files
Readme License Code of conduct Citation

README.md

DOI All Contributors License: MIT codecov .github/workflows/test.yml pre-commit.ci status Documentation Status https://github.com/psf/black Docker pulls

giga-connectome

This is a BIDS-App to extract signal from a parcellation with nilearn, typically useful in a context of resting-state data processing.

You can read our JOSS paper for the background of the project and the details of implementations.

Description

Functional connectivity is a common approach in analysing resting state fMRI data. The Python tool Nilearn provides utilities to extract and denoise time-series on a parcellation. Nilearn also has methods to compute functional connectivity. While Nilearn provides useful methods to generate connectomes, there is no standalone one stop solution to generate connectomes from fMRIPrep outputs. giga-connectome (a BIDS-app!) combines Nilearn and TemplateFlow to denoise the data, generate timeseries, and most critically giga-connectome generates functional connectomes directly from fMRIPrep outputs. The workflow comes with several built-in denoising strategies and there are several choices of atlases (MIST, Schaefer 7 networks, DiFuMo, Harvard-Oxford). Users can customise their own strategies and atlases using the configuration json files.

Supported fMRIPrep versions

giga-connectome fully supports outputs of fMRIPrep LTS (long-term support) 20.2.x.

For fMRIPrep 23.1.0 and later, giga-connectome does not support ICA-AROMA denoising, as the strategy is removed from the fMRIPrep workflow.

Quick start

Pull from Dockerhub (Recommended)

bash docker pull bids/giga_connectome:latest docker run -ti --rm bids/giga_connectome --help

If you want to get the bleeding-edge version of the app, pull the unstable version.

bash docker pull bids/giga_connectome:unstable

How to report errors

Please use the GitHub issue to report errors. Check out the open issues first to see if we're already working on it. If not, open up a new issue!

How to contribute

You can review open issues that we are looking for help with. If you submit a new pull request please be as detailed as possible in your comments. If you have any question related how to create a pull request, you can check our documentation for contributors.

Contributors

Hao-Ting Wang
Hao-Ting Wang

🤔 🔬 💻 ⚠️
Quentin Dessain
Quentin Dessain

📓 📦
Natasha Clarke
Natasha Clarke

📓 💡 🐛
Remi Gau
Remi Gau

🚇 🚧
Lune Bellec
Lune Bellec

🤔 💵
Jon Cluce
Jon Cluce

🐛
Emeline Mullier
Emeline Mullier

🐛
James Kent
James Kent

🐛 📖
Marcel Stimberg
Marcel Stimberg

📓 📖 🐛

Acknowledgements

Please cite the following paper if you are using giga-connectome in your work: bibtex @article{Wang2025, doi = {10.21105/joss.07061}, url = {https://doi.org/10.21105/joss.07061}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {110}, pages = {7061}, author = {Hao-Ting Wang and Rémi Gau and Natasha Clarke and Quentin Dessain and Lune Bellec}, title = {Giga Connectome: a BIDS-app for time series and functional connectome extraction}, journal = {Journal of Open Source Software} }

giga-connectome uses nilearn under the hood, hence please consider cite nilearn using the Zenodo DOI:

bibtex @software{Nilearn, author = {Nilearn contributors}, license = {BSD-4-Clause}, title = {{nilearn}}, url = {https://github.com/nilearn/nilearn}, doi = {https://doi.org/10.5281/zenodo.8397156} } Nilearn’s Research Resource Identifier (RRID) is: RRID:SCR_001362

We acknowledge all the nilearn developers as well as the BIDS-Apps team

This is a Python project packaged according to Contemporary Python Packaging - 2023.

Owner

  • Name: BIDS Apps
  • Login: bids-apps
  • Kind: organization

A collection of containerized neuroimaging workflows and pipelines that accept datasets organized according to the Brain Imaging Data Structure (BIDS).

JOSS Publication

Giga Connectome: a BIDS-app for time series and functional connectome extraction
Published
June 09, 2025
Volume 10, Issue 110, Page 7061
Authors
Hao-Ting Wang ORCID
Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada, Département de psychologie, Université de Montréal, Montréal, Canada
Rémi Gau ORCID
MIND team, INRIA, CEA, Université Paris-Saclay, Paris, France, Neuro Data Science ORIGAMI Laboratory, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montréal, Canada.
Natasha Clarke ORCID
Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
Quentin Dessain ORCID
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
Lune Bellec ORCID
Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada, Département de psychologie, Université de Montréal, Montréal, Canada, Mila, Université de Montréal, Montréal, Montréal, Canada
Editor
Marcel Stimberg ORCID
Tags
BIDS fMRI functional connectivity

Citation (CITATION.cff)

cff-version: 1.2.0

title: "giga_connectome"

abstract:
  "Generate time series and connectomes from fMRIPrep outputs."

message: "If you use this software, please cite it as below."

repository-code: "https://github.com/bids-apps/giga_connectome"

identifiers:
  - type: doi
    value: 10.21105/joss.07061

license: MIT

contact:
  - email: htwangtw@gmail.com
    family-names: Wang
    given-names: Hao-Ting

authors:
  - family-names: Wang
    given-names: Hao-Ting
    email: htwangtw@gmail.com
    orcid: https://orcid.org/0000-0003-4078-2038
  - family-names: Gau
    given-names: Rémi
    orcid: https://orcid.org/0000-0002-1535-9767
  - family-names: Clarke
    given-names: Natasha
    orcid: https://orcid.org/0000-0003-2455-3614
  - family-names: Dessain
    given-names: Quentin
    orcid: https://orcid.org/0000-0002-7314-0413
  - family-names: Bellec
    given-names: Lune
    orcid: https://orcid.org/0000-0002-9111-0699

GitHub Events

Total
  • Create event: 38
  • Release event: 3
  • Issues event: 30
  • Watch event: 4
  • Delete event: 32
  • Issue comment event: 55
  • Push event: 92
  • Pull request review comment event: 1
  • Pull request review event: 3
  • Pull request event: 74
  • Fork event: 3
Last Year
  • Create event: 38
  • Release event: 3
  • Issues event: 30
  • Watch event: 4
  • Delete event: 32
  • Issue comment event: 55
  • Push event: 92
  • Pull request review comment event: 1
  • Pull request review event: 3
  • Pull request event: 74
  • Fork event: 3

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 18
  • Total pull requests: 41
  • Average time to close issues: 5 months
  • Average time to close pull requests: 8 days
  • Total issue authors: 6
  • Total pull request authors: 6
  • Average comments per issue: 2.56
  • Average comments per pull request: 0.37
  • Merged pull requests: 29
  • Bot issues: 0
  • Bot pull requests: 20
Past Year
  • Issues: 14
  • Pull requests: 41
  • Average time to close issues: 3 months
  • Average time to close pull requests: 8 days
  • Issue authors: 5
  • Pull request authors: 6
  • Average comments per issue: 1.93
  • Average comments per pull request: 0.37
  • Merged pull requests: 29
  • Bot issues: 0
  • Bot pull requests: 20
Top Authors
Issue Authors
  • htwangtw (13)
  • Remi-Gau (5)
  • mstimberg (5)
  • shnizzedy (3)
  • jdkent (2)
  • emullier (2)
  • HippocampusGirl (1)
  • MarieStLaurent (1)
  • victoris93 (1)
  • mckenziephagen (1)
  • arovai (1)
Pull Request Authors
  • htwangtw (27)
  • pre-commit-ci[bot] (19)
  • allcontributors[bot] (9)
  • github-actions[bot] (6)
  • Remi-Gau (6)
  • dependabot[bot] (6)
  • jdkent (2)
  • clarkenj (1)
  • bpinsard (1)
  • mstimberg (1)
  • Hyedryn (1)
Top Labels
Issue Labels
bug (7) enhancement (2) maintainence (1)
Pull Request Labels
dependencies (6) github_actions (1)

Dependencies

.github/workflows/test.yml actions
  • actions/cache v3 composite
  • actions/cache/restore v3 composite
  • actions/checkout v3 composite
  • actions/checkout v2 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • codecov/codecov-action v3 composite
Dockerfile docker
  • python 3.9 build
pyproject.toml pypi
  • h5py *
  • nilearn *
  • pybids >=0.15.0, <0.16.0
  • templateflow < 23.0.0
  • tqdm *
.github/workflows/validate_cff.yml actions
  • actions/checkout v4 composite
  • citation-file-format/cffconvert-github-action 2.0.0 composite
docs/requirements.txt pypi
requirements.txt pypi
  • SQLAlchemy ==1.3.24
  • astor ==0.8.1
  • bids-validator ==1.14.0
  • certifi ==2023.11.17
  • charset-normalizer ==3.3.2
  • click ==8.1.7
  • docopt ==0.6.2
  • formulaic ==0.5.2
  • h5py ==3.10.0
  • idna ==3.6
  • interface-meta ==1.3.0
  • joblib ==1.3.2
  • lxml ==4.9.3
  • nibabel ==5.2.0
  • nilearn ==0.9.2
  • num2words ==0.5.13
  • numpy ==1.26.2
  • packaging ==23.2
  • pandas ==2.1.4
  • pybids ==0.15.6
  • python-dateutil ==2.8.2
  • pytz ==2023.3.post1
  • requests ==2.31.0
  • scikit-learn ==1.3.2
  • scipy ==1.11.4
  • six ==1.16.0
  • templateflow ==0.8.1
  • threadpoolctl ==3.2.0
  • tqdm ==4.66.1
  • typing_extensions ==4.9.0
  • tzdata ==2023.3
  • urllib3 ==2.1.0
  • wrapt ==1.16.0
.github/workflows/docker.yml actions
  • actions/cache v4 composite
  • actions/cache/restore v4 composite
  • actions/checkout v4 composite
  • actions/download-artifact v4 composite
  • actions/setup-python v5 composite
  • actions/upload-artifact v4 composite
  • docker/login-action f4ef78c080cd8ba55a85445d5b36e214a81df20a composite
.github/workflows/draft-paper.yml actions
  • actions/checkout v4 composite
  • actions/upload-artifact v1 composite
  • openjournals/openjournals-draft-action master composite