https://github.com/astrazeneca/ness
Official implementation of "NESS: Node Embeddings from Static Subgraphs"
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.4%) to scientific vocabulary
Keywords
Repository
Official implementation of "NESS: Node Embeddings from Static Subgraphs"
Basic Info
Statistics
- Stars: 19
- Watchers: 2
- Forks: 0
- Open Issues: 1
- Releases: 0
Topics
Metadata Files
README.md
NESS: Node Embeddings from Static Subgraphs
Author: Talip Ucar (ucabtuc@gmail.com)
Paper: NESS: Node Embeddings from Static Subgraphs
Table of Contents:
Model

Supports the following encoder types and their variational counterparts:
- GNAE, VGNAE
- GCN, VGCN
- GAT
- Linear, VariationalLinear
- ARGA, ARGVA
Datasets
Following datasets are supported:
- cora
- citeseer
- pubmed
- texas
- wisconsin
- cornell
- charmeleon
Note: Config file for Cora is provided. For others, you can copy Cora config file and change its name to the dataset of interest.
Environment
It is tested with Python 3.9. You can set up the environment by following steps:
pip install pipenv # To install pipenv if you don't have it already
pipenv install --skip-lock # To install required packages.
pipenv shell # To activate virtual env
Configuration
A yaml config file for each dataset (e.g., cora.yaml) must be saved under the "./config/" directory. The name of config file needs to match the name of the dataset.
Training
You can train the model using any supported dataset.
python train.py -d cora
Results
Results at the end of training is saved under "./results" directory. Results directory structure:
results
|
dataset name (e.g. cora)
|-evaluation
|-reconstructions (not used)
|-clusters (not used)
|-training
|-model (where the models are saved)
|-plots (where the plots are saved as png files)
|-loss (where the summary of metrics is saved as csv file)
Citing this repo
If you use this work in your own studies, and work, you can cite it by using the following:
@Misc{talip_ucar_2023_NESS,
author = {Talip Ucar},
title = {{Pytorch implementation of "NESS: Node Embeddings from Static Subgraphs"}},
howpublished = {\url{https://github.com/AstraZeneca/NESS}},
month = May,
year = {since 2023}
}
Owner
- Name: AstraZeneca
- Login: AstraZeneca
- Kind: organization
- Location: Global
- Website: https://www.astrazeneca.com/
- Repositories: 33
- Profile: https://github.com/AstraZeneca
Data and AI: Unlocking new science insights
GitHub Events
Total
- Watch event: 6
Last Year
- Watch event: 6
Dependencies
- Cython ==0.29.32
- Deprecated ==1.2.13
- Flask ==2.2.2
- GPUtil ==1.4.0
- HeapDict ==1.0.1
- Pillow ==9.2.0
- PyGSP ==0.5.1
- PySocks ==1.7.1
- Pygments ==2.14.0
- Werkzeug ==2.2.2
- aiosignal ==1.3.1
- anndata ==0.8.0
- arboreto ==0.1.6
- attrs ==22.1.0
- autopage ==0.5.1
- bio ==1.5.6
- biopython ==1.81
- biothings-client ==0.2.6
- biotite ==0.37.0
- black ==22.3.0
- bokeh ==2.4.3
- cdt ==0.6.0
- certifi ==2022.6.15
- cfgv ==3.3.1
- charset-normalizer ==2.1.0
- class-resolver ==0.3.10
- click ==8.0.4
- click-default-group ==1.2.2
- cliff ==3.10.1
- cloudpickle ==2.1.0
- cmaes ==0.8.2
- cmake ==3.24.0
- cmd2 ==2.4.2
- colorlog ==6.6.0
- conditional-independence ==0.1a6
- cycler ==0.11.0
- dask ==2023.3.1
- databricks-cli ==0.17.1
- dataclasses ==0.6
- dataclasses-json ==0.5.7
- datatable ==1.0.0
- decorator ==5.1.1
- distlib ==0.3.6
- distributed ==2023.3.1
- docdata ==0.0.3
- docker ==5.0.3
- et-xmlfile ==1.1.0
- filelock ==3.8.0
- fonttools ==4.34.4
- frozendict ==2.3.6
- frozenlist ==1.3.3
- fsspec ==2023.3.0
- future ==0.18.3
- gdown ==4.6.6
- gies ==0.0.1
- gprofiler-official ==1.0.0
- graphical-model-learning ==0.1a8
- graphical-models ==0.1a19
- graphtools ==1.5.3
- graphviz ==0.20.1
- grpcio ==1.50.0
- gunicorn ==20.1.0
- h5py ==3.8.0
- identify ==2.5.21
- idna ==3.3
- igraph ==0.10.4
- ilock ==1.0.3
- ipdb ==0.13.13
- isort ==5.10.1
- itsdangerous ==2.1.2
- joblib ==1.1.0
- jsonschema ==4.17.0
- kiwisolver ==1.4.4
- lazypredict ==0.2.12
- lightgbm ==3.3.3
- littleballoffur ==2.1.12
- littleutils ==0.2.2
- llvmlite ==0.39.1
- locket ==1.0.0
- lz4 ==4.3.2
- magic-impute ==3.0.0
- marshmallow ==3.17.0
- marshmallow-enum ==1.5.1
- matplotlib ==3.5.2
- more-click ==0.1.1
- more-itertools ==8.14.0
- msgpack ==1.0.4
- mygene ==3.2.2
- mypy-extensions ==0.4.3
- natsort ==8.3.1
- networkit ==7.1
- networkx ==2.8.5
- nodeenv ==1.7.0
- numba ==0.56.4
- numexpr ==2.8.4
- numpy ==1.23.1
- openpyxl ==3.1.2
- optuna ==2.10.1
- outdated ==0.2.2
- packaging ==21.3
- pandas ==1.3.5
- partd ==1.3.0
- patsy ==0.5.3
- pbr ==5.9.0
- pexpect ==4.8.0
- pgmpy ==0.1.21
- platformdirs ==2.5.4
- plotly ==5.12.0
- pooch ==1.7.0
- portalocker ==2.7.0
- pre-commit ==2.19.0
- pre-commit-hooks ==4.2.0
- prettytable ==3.3.0
- progressbar2 ==4.2.0
- prometheus-flask-exporter ==0.20.3
- protobuf ==3.20.1
- psutil ==5.9.4
- ptyprocess ==0.7.0
- pyarrow ==11.0.0
- pydot ==1.4.2
- pygam ==0.8.0
- pykeen ==1.9.0
- pynndescent ==0.5.8
- pyparsing ==3.0.9
- pyperclip ==1.8.2
- pyrsistent ==0.19.2
- pystow ==0.4.6
- python-igraph ==0.10.4
- python-louvain ==0.16
- python-utils ==3.5.2
- pytz ==2022.1
- querystring-parser ==1.2.4
- rdkit-pypi ==2022.3.4
- requests ==2.28.1
- rexmex ==0.1.0
- scanpy ==1.9.3
- scikit-learn ==1.1.2
- scikit-multilearn ==0.2.0
- scipy ==1.9.0
- scprep ==1.2.2
- seaborn ==0.11.2
- session-info ==1.0.0
- six ==1.16.0
- sklearn ==0.0
- skorch ==0.12.0
- skrebate ==0.62
- slingpy ==0.2.12
- sortedcontainers ==2.4.0
- sqlparse ==0.4.2
- statsmodels ==0.13.5
- stdlib-list ==0.8.0
- stevedore ==4.0.0
- tabulate ==0.8.10
- tasklogger ==1.2.0
- tblib ==1.7.0
- texttable ==1.6.4
- threadpoolctl ==3.1.0
- tokenizers ==0.13.2
- toml ==0.10.2
- toolz ==0.12.0
- torch ==1.11.0
- torch-cluster ==1.6.0
- torch-geometric ==2.0.4
- torch-max-mem ==0.0.2
- torch-ppr ==0.0.8
- torch-scatter ==2.0.9
- torch-sparse ==0.6.14
- torchaudio ==0.11.0
- torchvision ==0.12.0
- tqdm ==4.64.0
- typing ==3.7.4.3
- typing-inspect ==0.7.1
- typing_extensions ==4.3.0
- urllib3 ==1.26.11
- virtualenv ==20.16.7
- wcwidth ==0.2.5
- wrapt ==1.15.0
- xxhash ==3.2.0
- zict ==2.2.0
- zipp ==3.8.1