EnsembleKalmanProcesses.jl

EnsembleKalmanProcesses.jl: Derivative-free ensemble-based model calibration - Published in JOSS (2022)

https://github.com/clima/ensemblekalmanprocesses.jl

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
    5 of 31 committers (16.1%) from academic institutions
  • Institutional organization owner
    Organization clima has institutional domain (clima.caltech.edu)
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords from Contributors

pde climate ocean graphics climate-change data-assimilation fluid-dynamics meshing ode dynamical-systems

Scientific Fields

Economics Social Sciences - 40% confidence
Engineering Computer Science - 40% confidence
Last synced: 4 months ago · JSON representation

Repository

Implements Optimization and approximate uncertainty quantification algorithms, Ensemble Kalman Inversion, and Ensemble Kalman Processes.

Basic Info
Statistics
  • Stars: 106
  • Watchers: 4
  • Forks: 21
  • Open Issues: 38
  • Releases: 47
Created about 5 years ago · Last pushed 4 months ago
Metadata Files
Readme License

README.md

EnsembleKalmanProcesses.jl

Implements optimization and approximate uncertainty quantification algorithms, Ensemble Kalman Inversion, and other Ensemble Kalman Processes.

| Documentation | dev | |-----------------------------------|--------------------------------------------------| | DOI | DOI | | Docs Build | docs build | | Unit tests | unit tests | | Code Coverage | codecov | | JOSS | status | | Downloads | Downloads |

Requirements

Julia LTS version or newer

What does the package do?

EnsembleKalmanProcesses (EKP) enables users to find an (locally-) optimal parameter set u for a computer code G to fit some (noisy) observational data y. It uses a suite of methods from the Ensemble Kalman filtering literature that have a long history of success in the weather forecasting community.

What makes EKP different? - EKP algorithms are efficient (complexity doesn't strongly scale with number of parameters), and can optimize with noisy and complex parameter-to-data landscapes. - We don't require differentiating the model G at all! you just need to be able to run it at different parameter configurations. - We don't even require G to be coded up in Julia! - Ensemble model evaluations are fully parallelizable - so we can exploit our HPC systems capabilities! - We provide some lego-like interfaces for creating complex priors and observations. - We provied easy interfaces to toggle between many different algorithms and configurable features.

What does it look like to use?

Below we will outline the current user experience for using EnsembleKalmanProcesses.jl. Copy-paste the snippets to reproduce the results (up to random number generation).

We solve the classic inverse problem where we learn y = G(u), noisy forward map G distributed as N(0,Γ). For example, julia using LinearAlgebra G(u) = [ 1/abs(u[1]), sum(u[2:5]), prod(u[3:4]), u[1]^2-u[2]-u[3], u[4], u[5]^3, ] .+ 0.1*randn(6) true_u = [3, 1, 2,-3,-4] y = G(true_u) Γ = (0.1)^2*I We assume some prior knowledge of the parameters u in the problem (such as approximate scales, and the first parameter being positive), then we are ready to go!

```julia using EnsembleKalmanProcesses using EnsembleKalmanProcesses.ParameterDistributions

prioru1 = constrainedgaussian("positivewithmean2", 2, 1, 0, Inf) prioru2 = constrainedgaussian("fourwithspread5", 0, 5, -Inf, Inf, repeats=4) prior = combinedistributions([prioru1, prior_u2])

Nensemble = 50 initialensemble = constructinitialensemble(prior, Nensemble) ensemblekalmanprocess = EnsembleKalmanProcess( initialensemble, y, Γ, Inversion(), verbose=true)

Niterations = 10 for i in 1:Niterations paramsi = getϕfinal(prior, ensemblekalman_process)

G_matrix = hcat(
    [G(params_i[:, i]) for i in 1:N_ensemble]... # Parallelize here!
)

update_ensemble!(ensemble_kalman_process, G_matrix)

end

finalsolution = getϕmeanfinal(prior, ensemblekalmanprocess)

Let's see what's going on!

using Plots p = plot(prior) for (i,sp) in enumerate(p.subplots) vline!(sp, [trueu[i]], lc="black", lw=4) vline!(sp, [finalsolution[i]], lc="magenta", lw=4) end display(p) ``` quick-readme-example

See a similar working example here!. Check out our many example scripts above in examples/

Quick links!

Citing us

If you use the examples or code, please cite our article at JOSS in your published materials.

Getting Started

eki-getting-started <!---

Link to Miro for editing photo (ask haakon for access): https://miro.com/app/board/uXjVNm1teY=/?sharelink_id=329380184889

-->

Owner

  • Name: Climate Modeling Alliance
  • Login: CliMA
  • Kind: organization
  • Email: clima@caltech.edu

An alliance of scientists, engineers and applied mathematicians, dedicated to pioneering a new, data-informed approach to climate modeling

JOSS Publication

EnsembleKalmanProcesses.jl: Derivative-free ensemble-based model calibration
Published
December 15, 2022
Volume 7, Issue 80, Page 4869
Authors
Oliver R. a. Dunbar ORCID
Division of Geological and Planetary Sciences, California Institute of Technology
Ignacio Lopez-Gomez ORCID
Division of Geological and Planetary Sciences, California Institute of Technology
Alfredo Garbuno-Iñigo ORCID
Department of Statistics, Mexico Autonomous Institute of Technology
Daniel Zhengyu Huang ORCID
Division of Geological and Planetary Sciences, California Institute of Technology
Eviatar Bach ORCID
Division of Geological and Planetary Sciences, California Institute of Technology
Jin-long Wu ORCID
Department of Mechanical Engineering, University of Wisconsin-Madison
Editor
Mehmet Hakan Satman ORCID
Tags
julia optimization bayesian data assimilation

GitHub Events

Total
  • Create event: 57
  • Commit comment event: 19
  • Release event: 9
  • Issues event: 63
  • Watch event: 23
  • Delete event: 6
  • Issue comment event: 66
  • Push event: 782
  • Pull request review comment event: 51
  • Pull request review event: 58
  • Pull request event: 108
  • Fork event: 3
Last Year
  • Create event: 57
  • Commit comment event: 19
  • Release event: 9
  • Issues event: 63
  • Watch event: 23
  • Delete event: 6
  • Issue comment event: 66
  • Push event: 782
  • Pull request review comment event: 51
  • Pull request review event: 58
  • Pull request event: 108
  • Fork event: 3

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 532
  • Total Committers: 31
  • Avg Commits per committer: 17.161
  • Development Distribution Score (DDS): 0.592
Past Year
  • Commits: 55
  • Committers: 7
  • Avg Commits per committer: 7.857
  • Development Distribution Score (DDS): 0.145
Top Committers
Name Email Commits
odunbar o****r@c****u 217
Navid C. Constantinou n****y 90
ilopezgp i****p@g****m 84
Melanie m****e@c****l 20
Jinlong j****g@J****t 19
agarbuno a****o@i****x 14
Jake Bolewski j****i@g****m 12
CompatHelper Julia c****y@j****g 11
Eviatar Bach e****h@p****m 9
mhowlan3 m****3@g****m 8
Thomas Jackson t****4@g****m 6
costachris c****a@g****m 5
Daniel-Huang d****g@c****u 4
Nat Efrat-Henrici 6****i 4
Haakon Ludvig Langeland Ervik 4****e 3
Kevin Phan 9****v 3
github-actions[bot] 4****] 3
sydneyvernon 5****n 3
Gregory L. Wagner g****r@g****m 2
Daniel Z. Huang h****4@g****m 2
Mehmet Hakan Satman m****n@g****m 2
bielim b****m 2
Anna Jaruga a****a@c****u 1
Pietro Monticone 3****e 1
Rebecca Gjini 8****i 1
Simon Byrne s****e@g****m 1
Jinlong j****g@J****l 1
Costa Christopoulos c****s@C****l 1
Tomas Chor t****r@g****m 1
Wilson Duan w****n@c****u 1
and 1 more...
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 139
  • Total pull requests: 229
  • Average time to close issues: 3 months
  • Average time to close pull requests: 11 days
  • Total issue authors: 24
  • Total pull request authors: 19
  • Average comments per issue: 1.14
  • Average comments per pull request: 1.73
  • Merged pull requests: 195
  • Bot issues: 1
  • Bot pull requests: 32
Past Year
  • Issues: 49
  • Pull requests: 102
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 8 days
  • Issue authors: 9
  • Pull request authors: 9
  • Average comments per issue: 0.2
  • Average comments per pull request: 0.69
  • Merged pull requests: 77
  • Bot issues: 1
  • Bot pull requests: 21
Top Authors
Issue Authors
  • odunbar (91)
  • nefrathenrici (6)
  • ilopezgp (5)
  • haakon-e (5)
  • eviatarbach (4)
  • bielim (3)
  • costachris (2)
  • Julians42 (2)
  • sdwfrost (2)
  • ph-kev (2)
  • wilsonduan10 (2)
  • Sbozzolo (2)
  • glwagner (1)
  • odow (1)
  • bischtob (1)
Pull Request Authors
  • odunbar (158)
  • github-actions[bot] (27)
  • ilopezgp (14)
  • dependabot[bot] (12)
  • eviatarbach (9)
  • nefrathenrici (6)
  • costachris (6)
  • ph-kev (5)
  • sydneyvernon (4)
  • wilsonduan10 (2)
  • glwagner (2)
  • jbytecode (2)
  • ArneBouillon (2)
  • haakon-e (2)
  • rgjini (1)
Top Labels
Issue Labels
I'm a bug - please fix me (8) enhancement (6) documentation (5) SDI (3) help wanted (2) stale dependencies (2) bug (2) robustness (1)
Pull Request Labels
stale dependencies (11) do not merge (3) documentation (1) bug (1) dependencies (1) github_actions (1)

Packages

  • Total packages: 1
  • Total downloads:
    • julia 66 total
  • Total dependent packages: 8
  • Total dependent repositories: 0
  • Total versions: 46
juliahub.com: EnsembleKalmanProcesses

Implements Optimization and approximate uncertainty quantification algorithms, Ensemble Kalman Inversion, and Ensemble Kalman Processes.

  • Versions: 46
  • Dependent Packages: 8
  • Dependent Repositories: 0
  • Downloads: 66 Total
Rankings
Forks count: 9.8%
Dependent repos count: 9.9%
Average: 10.9%
Dependent packages count: 11.0%
Stargazers count: 12.9%
Last synced: 4 months ago

Dependencies

.github/workflows/DocPreviewCleanup.yml actions
  • actions/checkout v2 composite
.github/workflows/Docs.yml actions
  • actions/cache v1 composite
  • actions/checkout v2 composite
  • julia-actions/setup-julia v1 composite
  • styfle/cancel-workflow-action 0.9.1 composite
.github/workflows/JuliaFormatter.yml actions
  • actions/checkout v2 composite
  • dorny/paths-filter v2.9.1 composite
  • julia-actions/setup-julia latest composite
  • styfle/cancel-workflow-action 0.9.1 composite
.github/workflows/TagBot.yml actions
  • JuliaRegistries/TagBot v1 composite
.github/workflows/Tests.yml actions
  • actions/checkout v2 composite
  • codecov/codecov-action v1 composite
  • julia-actions/julia-buildpkg v1 composite
  • julia-actions/julia-runtest v1 composite
  • julia-actions/setup-julia v1 composite
  • styfle/cancel-workflow-action 0.9.1 composite
.github/workflows/CompatHelper.yml actions