ginjax
ginjax: E(d)-Equivariant CNN for Tensor Images - Published in JOSS (2025)
Science Score: 93.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 14 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
○Academic email domains
-
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Scientific Fields
Repository
Equivariant convolutions for machine learning on tensor fields
Basic Info
- Host: GitHub
- Owner: WilsonGregory
- License: mit
- Language: Python
- Default Branch: main
- Homepage: https://ginjax.readthedocs.io/en/latest/
- Size: 44.8 MB
Statistics
- Stars: 4
- Watchers: 1
- Forks: 1
- Open Issues: 2
- Releases: 3
Metadata Files
README.md
ginjax
Equivariant geometric convolutions for machine learning on tensor images
The ginjax package implements the GeometricImageNet in jax (hence, ginjax) which allows for writing general functions from geometric images to geometric images. Also, with an easy restriction to group invariant CNN filters, we can write CNNs that are equivariant to those groups for geometric images.
See the paper for more details: https://royalsocietypublishing.org/doi/full/10.1098/rsta.2024.0247?af=R.
See our readthedocs for full documentation.
Table of Contents
Installation
Install using pip: pip install ginjax.
Developer Installation
To work on this package, install the repo as an editable install by doing the following:
- Clone the repository git clone https://github.com/WilsonGregory/ginjax.git
- Navigate to the ginjax directory cd ginjax
- Locally install the package pip install -e . (may have to use pip3 if your system has both python2 and python3 installed)
- In order to run JAX on a GPU, you will likely need to follow some additional steps detailed in https://github.com/google/jax#installation. You will probably need to know your CUDA version, which can be found with nvidia-smi and/or nvcc --version.
- In order to run the unit tests, install pytest pip install pytest. Then tests can be run by calling pytest from the package root directory.
Features
GeometricImage
The main concept of this package is an object called a GeometricImage which generalizes a normal image to include scalar images, vector images, or tensor images of any tensor order or parity.
For example, suppose we have a 16 by 16 vector image, that is a 2D image where every pixel is a vector in $\mathbb{R}^2$.
You can think of this as 16 x 16 x 2 numbers, but the key observation is that the components of the vector in each pixel are not independent, as would be the case of two channels of a scalar image.
When you rotate a vector image 90 degrees to the right, the pixel locations rotate as well as the individual vectors in each pixel:
To construct a geometric image in ginjax, do the following:
python
import jax.numpy as jnp
from ginjax.geometric import GeometricImage
D = 2 # 2-dimensional image, we could also do 3D.
data = jnp.arange(16*16*2).reshape((16,16,2))
parity = 0 # even parity, its a vector image not a pseudovector image
image = GeometricImage(data, parity, D)
Data is a jax numpy array with the shape spatial dimensions followed by (D,)*k). Images default to being defined on the torus, aka periodic boundary conditions.
When working with a metric that is not the flat Euclidean metric, you can define which tensor axes are contravariant (the default) or covariant.
Geometric images of a particular shape, tensor order, and parity form a vector space so we have the usual operations of addition, subtraction, and scalar multiplication:
```python
some other image using fill constructor
image2 = geom.GeometricImage.fill(16, parity, D, fill=jnp.array([1,0]))
addedimage = image + image2 # addition
subtractedimage = image - image2 # subtraction
scaledimage = image * 3 # scalar multiplication
Additionally, if we have two images of the same spatial dimensions, but possibly different tensor orders or parities, we can multiply them where each pixel is the tensor product.
python
image1 = GeometricImage(jnp.ones((3,3,D)), parity, D)
image2 = GeometricImage(jnp.ones((3,3,D,D)), parity, D)
imageproduct = image1 * image2 # data will be shape (3,3,2,2,2)
```
There are many more operations we can perform on geometric images including convolutions, contractions, rotations, norms, pooling, etc.
This example is continued on our readthedocs site.
MultiImage
The GeometricImage class is useful for exploring and experimenting with individual geometric images; however, in machine learning contexts we typically need multiple channels and batches of images. In addition, to build rotationally equivariant models, we may need to track multiple image types (scalar, vector, tensor, etc.) simultaneously. The MultiImage class allows us to do all of this at once, only making the assumption that the images are all in the same dimensional space (2D or 3D) and they all have the same spatial dimensions. MultiImage is a dictionary where the keys are (tensor order k, parity p) and the values are a image data block which has some number of initial axes followed by spatial axes and tensor axes. Common numbers of prior axes are 1 for channels, or 2 for batch followed by channels. For example: ```python D = 2 # dimension of the space spatial_dims = (3,3) # image spatial dimensions
first construct multi image with channels but not batch
multiimage1 = MultiImage( { (0,0): jnp.ones((3,) + spatialdims), # 3 scalar channels (1,0): jnp.ones((1,) + spatial_dims + (D,)) # 1 vector channel }, D, )
now construct multi image with batch dimension
batch = 5 # batch size batchmultiimage2 = MultiImage( { (1,1): jnp.ones((batch,1) + spatialdims + (D,)), # 1 pseudovector (2,0): jnp.ones((batch,2) + spatialdims + (D,D)) # 2 2-tensor }, D, ) ``` The machine learning layers and models defined in this package expect a single axis for the channels, while the training code expects batch and then channels. To use MultiImages for machine learning, see the scalar example and gradient example. MultiImages can also be created with an associated metric tensor field.
Equivariance
The main motivation of this package is for designing neural networks on geometric images that capture the symmetries of those geometric images. Since we are working with discrete images, the symmetries are described by discrete groups such as translations, rotations of 90 degrees, reflections, or subgroups of these groups. See Group and Invariant Filters for more details. The scalars, vectors, and tensors of physics are equivariant to continuous rotations rather than just rotations of 90 degrees, but we do not consider them in this project to avoid voxelization issues.
We want our neural network as a function of geometric images to be equivariant with respect to these groups. If $G$ is a group with an action on vector spaces $X$ and $Y$ and $f$ is a function from $X$ to $Y$, then we say $f$ is $G$-equivariant if for all $g \in G$, $x \in X$, we have $f(g \cdot x) = g \cdot f(x)$. See Math Background for more details.
Authors and Attribution
- Wilson Gregory (JHU)
- Kaze W. K. Wong (JHU)
- David W. Hogg (NYU) (MPIA) (Flatiron)
- Soledad Villar (JHU)
If you use this package in your own work, please cite one of the following:
``` @article{doi:10.1098/rsta.2024.0247, author = {Gregory, Wilson G. and Hogg, David W. and Blum-Smith, Ben and Arias, Maria Teresa and Wong, Kaze W. K. and Villar, Soledad }, title = {Equivariant geometric convolutions for dynamical systems on vector and tensor images}, journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}, volume = {383}, number = {2298}, pages = {20240247}, year = {2025}, doi = {10.1098/rsta.2024.0247}, URL = {https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2024.0247}, eprint = {https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2024.0247}, }
@article{doi:10.21105/joss.08129, doi = {10.21105/joss.08129}, url = {https://doi.org/10.21105/joss.08129}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {112}, pages = {8129}, author = {Gregory, Wilson G. and Wong, Kaze W. k. and Hogg, David W. and Villar, Soledad}, title = {ginjax: E(d)-Equivariant CNN for Tensor Images}, journal = {Journal of Open Source Software}, } ```
License
Copyright 2022 the authors. All text (in .txt and .tex and .bib files) is licensed All rights reserved. All code (everything else) is licensed for use and reuse under the open-source MIT License. See the file LICENSE for more details of that.
Owner
- Name: Wilson Gregory
- Login: WilsonGregory
- Kind: user
- Location: Baltimore, MD
- Company: John Hopkins University
- Repositories: 2
- Profile: https://github.com/WilsonGregory
AMS PhD Student
JOSS Publication
ginjax: E(d)-Equivariant CNN for Tensor Images
Authors
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States, Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, United States
Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY, United States, Max-Planck-Institut für Astronomie, Heidelberg, Germany, Center for Computational Astrophysics, Flatiron Institute, New York, NY, United States
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States, Center for Computational Mathematics, Flatiron Institute, New York, NY, United States, Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD, United States
Tags
Jax machine learning E(d)-equivariance tensor images EquinoxGitHub Events
Total
- Create event: 20
- Issues event: 12
- Release event: 2
- Watch event: 1
- Delete event: 16
- Issue comment event: 14
- Push event: 29
- Pull request event: 34
Last Year
- Create event: 20
- Issues event: 12
- Release event: 2
- Watch event: 1
- Delete event: 16
- Issue comment event: 14
- Push event: 29
- Pull request event: 34
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 10
- Total pull requests: 102
- Average time to close issues: about 2 months
- Average time to close pull requests: about 3 hours
- Total issue authors: 3
- Total pull request authors: 2
- Average comments per issue: 2.2
- Average comments per pull request: 0.0
- Merged pull requests: 98
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 10
- Pull requests: 96
- Average time to close issues: about 2 months
- Average time to close pull requests: about 3 hours
- Issue authors: 3
- Pull request authors: 2
- Average comments per issue: 2.2
- Average comments per pull request: 0.0
- Merged pull requests: 92
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- ameya98 (6)
- zhanglw0521 (3)
- kazewong (1)
Pull Request Authors
- WilsonGregory (100)
- kazewong (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 143 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 3
- Total maintainers: 1
pypi.org: ginjax
Package for building Convolutional Neural Networks on images of tensors.
- Documentation: https://ginjax.readthedocs.io/
- License: MIT License Copyright (c) 2022 David W. Hogg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
Latest release: 0.1.6
published 5 months ago
Rankings
Maintainers (1)
Dependencies
- jax *
- matplotlib *
- numpy *
- cmastro >=0.2
- equinox >=0.11.11
- imageio >=2.37.0
- jax >=0.5.0
- matplotlib >=3.10.0
- numpy >=2.2.2
- optax >=0.2.4
- 113 dependencies