DIANNA

DIANNA: Deep Insight And Neural Network Analysis - Published in JOSS (2022)

https://github.com/dianna-ai/dianna

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 16 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: arxiv.org, plos.org, joss.theoj.org, zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

explainable-artificial-intelligence scientific-research

Scientific Fields

Engineering Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Deep Insight And Neural Network Analysis

Basic Info
  • Host: GitHub
  • Owner: dianna-ai
  • License: apache-2.0
  • Language: Jupyter Notebook
  • Default Branch: main
  • Homepage: https://dianna.readthedocs.io
  • Size: 279 MB
Statistics
  • Stars: 52
  • Watchers: 4
  • Forks: 12
  • Open Issues: 96
  • Releases: 19
Topics
explainable-artificial-intelligence scientific-research
Created over 4 years ago · Last pushed 11 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Roadmap

README.md

build Documentation Status workflow scc badge CII Best Practices fair-software.eu DOI

Logo_ER10

Introducing DIANNA video

Deep Insight And Neural Network Analysis

DIANNA is a Python package that brings explainable AI (XAI) to your research project. It wraps carefully selected XAI methods in a simple, uniform interface. It's built by, with and for (academic) researchers and research software engineers working on machine learning projects.

Why DIANNA?

DIANNA software is addressing needs of both (X)AI researchers and mostly the various domains scientists who are using or will use AI models for their research without being experts in (X)AI. DIANNA is future-proof: one of the very few XAI library supporting the Open Neural Network Exchange (ONNX) format.

After studying the vast XAI landscape we have made choices in the parts of the XAI Taxonomy on which methods, data modalities and problems types to focus. Our choices, based on the largest usage in scientific literature, are shown graphically in the XAI taxonomy below:

XAI_taxonomy

The key points of DIANNA:

  • Provides an easy-to-use interface for non (X)AI experts
  • Implements well-known XAI methods LIME, RISE and KernelSHAP, chosen by systematic and objective evaluation criteria
  • Comes with a dashboard where results of different explainers can be compared for all data types
  • Supports the de-facto standard of neural network models - ONNX
  • Supports images, text, time series, tabular data modalities and embeddings (in a related package)
  • Comes with simple intuitive image, text, time series, and tabular benchmarks, so can help you with your XAI research
  • Includes scientific use-cases tutorials
  • Easily extendable to other XAI methods

For more information on the unique strengths of DIANNA with comparison to other tools, please see the context landscape.

Installation

workflow pypi badge supported python versions

DIANNA can be installed from PyPI using pip on any of the supported Python versions (see badge):

console python3 -m pip install dianna

To install the most recent development version directly from the GitHub repository run:

console python3 -m pip install git+https://github.com/dianna-ai/dianna.git

If you get an error related to OpenMP when importing dianna, have a look at this issue for possible workarounds.

Pre-requisites only for Macbook Pro with M1 Pro chip users

- To install TensorFlow you can follow this [tutorial](https://betterdatascience.com/install-tensorflow-2-7-on-macbook-pro-m1-pro/). - To install TensorFlow Addons you can follow these [steps](https://github.com/tensorflow/addons/pull/2504). For further reading see this [issue](https://github.com/tensorflow/addons/issues/2503). Note that this temporary solution works only for macOS versions >= 12.0. Note that this step may have changed already, see https://github.com/dianna-ai/dianna/issues/245. - Before installing DIANNA, comment `tensorflow` requirement in `setup.cfg` file (tensorflow package for M1 is called `tensorflow-macos`).

Getting started

You need:

You get:

  • a relevance map overlayed over the data item

Template example for any data modality and explainer

  1. Provide your trained model and data item ( text, image, time series or tabular )

python model_path = 'your_model.onnx' # model trained on your data modality data_item = <data_item> # data item for which the model's prediction needs to be explained

  1. If the task is classification: which are the classes your model has been trained for?

python labels = [class_a, class_b] # example of binary classification labels Which of these classes do you want an explanation for? python explained_class_index = labels.index(<explained_class>) # explained_class can be any of the labels

  1. Run dianna with the explainer of your choice ( 'LIME', 'RISE' or 'KernalSHAP') and visualize the output:

python explanation = dianna.<explanation_function>(model_path, data_item, explainer) dianna.visualization.<visualization_function>(explanation[explained_class_index], data_item)

Text and image usage

Examples

Lets illustrate the template above with *textual* data. The data item of interest is a sentence being (a part of) a movie review and the model has been trained to classify reviews into positive and negative sentiment classes. We are intersted which words are contributing positively (red) and which - negatively (blue) towards the model's desicion to classify the review as positive and we would like to use the *LIME* explainer: ```python model_path = 'your_text_model.onnx' # also define a model runner here (details in dedicated notebook) review = 'The movie started great but the ending is boring and unoriginal.' labels = ["negative", "positive"] explained_class_index = labels.index("positive") explanation = dianna.explain_text(model_path, text, 'LIME') dianna.visualization.highlight_text(explanation[explained_class_index], model_runner.tokenizer.tokenize(review)) ``` ![image](https://user-images.githubusercontent.com/6087314/155532504-6f90f032-cbb4-4e71-9b99-aa9c0de4e86a.png) Here is another illustration on how to use dianna to explain which parts of a bee *image* contributied positively (red) or negativey (blue) towards a classifying the image as a *'bee'* using *RISE*. The Imagenet model has been trained to distinguish between 1000 classes (specified in ```labels```). For images, which are data of higher dimention compared to text, there are also some specifics to consider: ```python model_path = 'your_image_model.onnx' image = PIL.Image.open('your_bee_image.jpeg') axis_labels = {2: 'channels'} explained_class_index = labels.index('bee') explanation = dianna.explain_image(model_path, image, 'RISE', axis_labels=axis_labels, labels=labels) dianna.visualization.plot_image(explanation[explained_class_index], utils.img_to_array(image)/255., heatmap_cmap='bwr') plt.show() ``` And why would Imagenet think the same image would be a *garden spider*? ```python explained_class_index = labels.index('garden_spider') # interested in the image being classified as a garden spider explanation = dianna.explain_image(model_path, image, 'RISE', axis_labels=axis_labels, labels=labels) dianna.visualization.plot_image(explanation[explained_class_index], utils.img_to_array(image)/255., heatmap_cmap='bwr') plt.show() ```

Overview tutorial

There are full working examples on how to use the supported explainers and how to use dianna for all supported data modalities in our overview tutorial.

IMPORTANT: Sensitivity to hyperparameters

The explainers are sensitive to the choice of their hyperparameters! In this work, this sensitivity to hyperparameters is researched and useful conclusions are drawn. The default hyperparameters used in DIANNA for each explainer as well as the values for our tutorial examples are given in the Tutorials README.

Introductory video

This video shows the main functionality of DIANNA and shows you how to use DIANNA also from its dashboard.

Watch the video on YouTube

Dashboard

image

Explore the explanations of your trained model using the DIANNA dashboard. Click here for more information.

Datasets

DIANNA comes with simple datasets. Their main goal is to provide intuitive insight into the working of the XAI methods. They can be used as benchmarks for evaluation and comparison of existing and new XAI methods.

Images | Dataset | Description | Examples | Generation | | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------- | | Binary MNIST mnist_zero_and_one_half_size | Greyscale images of the digits "1" and "0" - a 2-class subset from the famous[MNIST dataset](http://yann.lecun.com/exdb/mnist/) for handwritten digit classification. | BinaryMNIST | [Binary MNIST dataset generation](https://github.com/dianna-ai/dianna-exploration/tree/main/example_data/dataset_preparation/MNIST) | | [Simple Geometric (circles and triangles)](https://doi.org/10.5281/zenodo.5012824) Simple Geometric Logo | Images of circles and triangles for 2-class geometric shape classificaiton. The shapes of varying size and orientation and the background have varying uniform gray levels. | SimpleGeometric | [Simple geometric shapes dataset generation](https://github.com/dianna-ai/dianna-exploration/tree/main/example_data/dataset_preparation/geometric_shapes) | | [Simple Scientific (LeafSnap30)](https://zenodo.org/record/5061353/) LeafSnap30 Logo | Color images of tree leaves - a 30-class post-processed subset from the LeafSnap dataset for automatic identification of North American tree species. | LeafSnap | [LeafSnap30 dataset generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/dataset_preparation/LeafSnap/) |
Text

| Dataset | Description | Examples | Generation | | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---------------------------------------------------------------------------- | :--------------------------------------------------------------- | :------------------------------------------------------------------ | | [Stanford sentiment treebank](https://nlp.stanford.edu/sentiment/index.html) nlp-logo_half_size | Dataset for predicting the sentiment, positive or negative, of movie reviews. | _This movie was actually neither that funny, nor super witty._ | [Sentiment treebank](https://nlp.stanford.edu/sentiment/treebank.html) | | [EU-law statements](https://zenodo.org/records/8200000) nlp-logo_half_size | Reproducibility data for a quantitative study on EU legislation. | _A Member State wishing to grant exemptions referred to in paragraph 6 shall notify the Council in writing_ | [EU legislation strictness analysis](https://github.com/nature-of-eu-rules/eu-legislation-strictness-analysis) |

Time series

| Dataset | Description | Examples | Generation | | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------ | | [Coffee dataset](https://www.timeseriesclassification.com/description.php?Dataset=Coffee) Coffe Logo | Food spectographs time series dataset for a two class problem to distinguish between Robusta and Arabica coffee beans. | example image | [data source](https://github.com/QIBChemometrics/Benchtop-NMR-Coffee-Survey) | | [Weather dataset](https://zenodo.org/record/7525955) Weather Logo | The light version of the weather prediciton dataset, which contains daily observations (89 features) for 11 European locations through the years 2000 to 2010. | example image | [data source](https://github.com/florian-huber/weather_prediction_dataset) |

Tabular

| Dataset | Description | Examples | Generation | | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------ | | [Pengiun dataset](https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris) Penguins Logo | Palmer Archipelago (Antarctica) penguin dataset is a great intro dataset for data exploration & visualization similar to the famous Iris dataset. | example image | [data source](https://github.com/allisonhorst/palmerpenguins) | | [Weather dataset](https://zenodo.org/record/7525955) Weather Logo | The light version of the weather prediciton dataset, which contains daily observations (89 features) for 11 European locations through the years 2000 to 2010. | example image | [data source](https://github.com/florian-huber/weather_prediction_dataset) | | [Land atmosphere dataset](https://zenodo.org/records/12623257) Atmosphere Logo | It contains land-atmosphere variables and latent heat flux (LEtot) simulated by STEMMUS-SCOPE (soil-plant model), version 1.5.0, over 19 Fluxnet sites and for the year 2014 with hourly intervals. | example image | [data source](https://zenodo.org/records/12623257) |

Models

We work with ONNX! ONNX is a great unified neural network standard which can be used to boost reproducible science. Using ONNX for your model also gives you a boost in performance! In case your models are still in another popular DNN (deep neural network) format, here are some simple recipes to convert them:

More converters with examples and tutorials can be found on the ONNX tutorial page.

And here are links to notebooks showing how we created our models on the benchmark datasets:

Images | Models | Generation | | :-------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Binary MNIST model](https://zenodo.org/record/5907177) | [Binary MNIST model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/MNIST/generate_model_binary.ipynb) | | [Simple Geometric model](https://zenodo.org/deposit/5907059) | [Simple geometric shapes model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/geometric_shapes/generate_model.ipynb) | | [Simple Scientific model](https://zenodo.org/record/5907196) | [LeafSnap30 model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/LeafSnap/generate_model.ipynb) |
Text | Models | Generation | |:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Movie reviews model](https://zenodo.org/record/5910598) | [Stanford sentiment treebank model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/movie_reviews/generate_model.ipynb) | | [Regalatory statement classifier](https://zenodo.org/record/8200001) | [EU-law regulatory-statement-classification](https://github.com/nature-of-eu-rules/regulatory-statement-classification) |
Time series | Models | Generation | | :-------------------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Coffee model](https://zenodo.org/records/10579458) | [Coffee model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/coffee/generate_model.ipynb) | | [Season prediction model](https://zenodo.org/record/7543883) | [Season prediction model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/season_prediction/generate_model.ipynb) | | [Fast Radio Burst classification model](https://zenodo.org/records/10656614) | [Fast Radio Burst classification model generation](https://doi.org/10.3847/1538-3881/aae649) |
Tabular | Models | Generation | | :-------------------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [Penguin model (classification)](https://zenodo.org/records/10580743) | [Penguin model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/penguin_species/generate_model.ipynb) | | [Sunshine hours prediction model (regression)](https://zenodo.org/records/10580833) | [Sunshine hours prediction model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/sunshine_prediction/generate_model.ipynb) | | [Latent heat flux prediction model (regression)](https://zenodo.org/records/12623257) | [Latent heat flux prediction model](doi:10.5281/zenodo.12623256/stemmus_scope_emulator_model_LEtot.onnx) |

We envision the birth of the ONNX Scientific models zoo soon...

Tutorials

DIANNA supports different data modalities and XAI methods (explainers). We have evaluated many explainers using objective criteria (see the How to find your AI explainer blog-post). The table below contains links to the relevant XAI method's papers (for some explanatory videos on the methods, please see tutorials). The DIANNA tutorials cover each supported method and data modality on a least one dataset using the default or tuned hyperparameters. Our plans to expand DIANNA with more data modalities and explainers are given in the ROADMAP.

| Data \ XAI | RISE | LIME | KernelSHAP | | :--------- | :------------------------------------------------ | :----------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------- | | Images | ✅ | ✅ | ✅ | | Text | ✅ | ✅ | | | Timeseries | ✅ | ✅ | | | Tabular | ✅ | ✅ | ✅ | | Embedding | inspired by RISE in distance_explainer | | | | Graphs | next steps | ... | ... |

LRP and PatternAttribution also feature in the top 5 of our thoroughly evaluated explainers. Also GradCAM) has been recently found to be semantically continous! Contributing by adding these and more (new) post-hoc explainability methods on ONNX models is very welcome!

Scientific use-cases

Our goal is that the scientific community embrases XAI as a source for novel and unexplored perspectives on scientific problems. Here, we offer tutorials on specific scientific use-cases of uisng XAI:

| Use-case (data) \ XAI | RISE | LIME | KernelSHAP | |:-------------------------------------------------------------------|:-----------------------------------------------------| :---------------------------------------------------------------------| :-------------------------------------------------------------------------------------------------------| | Biology (Phytomorphology): Tree Leaves classification (images) | | ✅ | | | Astronomy: Fast Radio Burst detection (timeseries) | ✅ | | | | Land-atmosphere modeling: Latent heat flux prediction (tabular) | | | ✅ | | Social sciences: EU-law regulatory statement classification (text) | | ✅ | | | Climate | planned | ... | ... |

Reference documentation

For detailed information on using specific DIANNA functions, please visit the documentation page hosted at Readthedocs.

Contributing

If you want to contribute to the development of DIANNA, have a look at the contribution guidelines. See our developer documentation for information on developer installation, running tests, generating documentation, versioning and making a release.

How to cite us

DOI RSD

If you use this package for your scientific work, please consider citing directly the software as:

Ranguelova, E., Bos, P., Liu, Y., Meijer, C., Oostrum, L., Crocioni, G., Ootes, L., Chandramouli, P., Jansen, A., Smeets, S. (2023). dianna (*[VERSION YOU USED]*). Zenodo. https://zenodo.org/record/5592606

or the JOSS paper as:

Ranguelova et al., (2022). DIANNA: Deep Insight And Neural Network Analysis. Journal of Open Source Software, 7(80), 4493, https://doi.org/10.21105/joss.04493

See also the Zenodo page or the JOSS page for exporting the software citation to BibTteX and other formats.

Credits

This package was created with Cookiecutter and the NLeSC/python-template.

Owner

  • Name: Deep Insight And Neural Network Analysis (DIANNA)​
  • Login: dianna-ai
  • Kind: organization
  • Location: Amsterdam

Netherlands eScience Center and SURF project to build software for post-hoc explainability of deep neural networks for scientists​

JOSS Publication

DIANNA: Deep Insight And Neural Network Analysis
Published
December 15, 2022
Volume 7, Issue 80, Page 4493
Authors
Elena Ranguelova ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Christiaan Meijer ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Leon Oostrum ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Yang Liu ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Patrick Bos ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Giulia Crocioni ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Matthieu Laneuville ORCID
SURF, Amsterdam, the Netherlands
Bryan Cardenas Guevara ORCID
SURF, Amsterdam, the Netherlands
Rena Bakhshi ORCID
Netherlands eScience Center, Amsterdam, the Netherlands
Damian Podareanu ORCID
SURF, Amsterdam, the Netherlands
Editor
Patrick Diehl ORCID
Tags
explainable AI Deep Neural Networks ONNX benchmark datasets

Citation (CITATION.cff)

# YAML 1.2
---
cff-version: 1.2.0
title: "dianna"
authors:
  -
    family-names: Ranguelova
    given-names: Elena
    orcid: "https://orcid.org/0000-0002-9834-1756"
  -
    family-names: Bos
    given-names: Patrick
    orcid: "https://orcid.org/0000-0002-6033-960X"
  -
    family-names: Liu
    given-names: Yang
    orcid: "https://orcid.org/0000-0002-1966-8460"
  -
    family-names: Meijer
    given-names: Christiaan
    orcid: "https://orcid.org/0000-0002-5529-5761"
  -
    family-names: Alidoost
    given-names: Fakhereh (Sarah)
    orcid: "https://orcid.org/0000-0001-8407-6472"
  -
    family-names: Oostrum
    given-names: Leon
    orcid: "https://orcid.org/0000-0001-8724-8372"
  -
    family-names: Crocioni
    given-names: Giulia
    orcid: "https://orcid.org/0000-0002-0823-0121"
  -
    family-names: Jansen
    given-names: Aron
    orcid: "https://orcid.org/0000-0002-4764-9347"
  -
    family-names: Ootes
    given-names: Laura
    orcid: "https://orcid.org/0000-0002-2800-8309"
  -
    family-names: Chandramouli
    given-names: Pranav
    orcid: "https://orcid.org/0000-0002-7896-2969"
  -
    family-names: Smeets
    given-names: Stef
    orcid: "https://orcid.org/0000-0002-5413-9038"
  -
    family-names: Spek
    given-names: Willem
    name-particle: "van der"

doi: 10.5281/zenodo.5801485
version: "1.7.0"
repository-code: "https://github.com/dianna-ai/dianna"
keywords:
  - XAI
  - machine learning
message: "If you use this software, please cite it using these metadata."
license: Apache-2.0

GitHub Events

Total
  • Create event: 8
  • Release event: 1
  • Issues event: 5
  • Watch event: 6
  • Delete event: 2
  • Issue comment event: 26
  • Push event: 40
  • Pull request review comment event: 4
  • Pull request review event: 8
  • Pull request event: 12
Last Year
  • Create event: 8
  • Release event: 1
  • Issues event: 5
  • Watch event: 6
  • Delete event: 2
  • Issue comment event: 26
  • Push event: 40
  • Pull request review comment event: 4
  • Pull request review event: 8
  • Pull request event: 12

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,819
  • Total Committers: 20
  • Avg Commits per committer: 90.95
  • Development Distribution Score (DDS): 0.781
Past Year
  • Commits: 356
  • Committers: 6
  • Avg Commits per committer: 59.333
  • Development Distribution Score (DDS): 0.388
Top Committers
Name Email Commits
Laura Ootes l****s@e****l 399
Elena Ranguelova E****a@e****l 375
Christiaan Meijer c****r@e****l 322
Leon Oostrum l****m@e****l 211
Yang y****u@e****l 173
E. G. Patrick Bos e****s@g****m 90
SarahAlidoost f****t@e****l 78
gcroci2 c****a@g****m 37
Stef Smeets s****s 33
WillemSpek w****k@g****m 29
cpranav93 p****i@e****l 27
Aron a****n@g****m 20
Pranav Chandramouli c****3@y****m 16
Abel Soares Siqueira a****a@g****m 2
Jurriaan H. Spaaks j****s@e****l 2
NLeSC Python template n****e 1
_ocean o****1 1
elboyran e****r@I****4 1
Giulia Crocioni g****i@g****n 1
kody.moodley@gmail.com k****y@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 237
  • Total pull requests: 140
  • Average time to close issues: 3 months
  • Average time to close pull requests: 22 days
  • Total issue authors: 13
  • Total pull request authors: 11
  • Average comments per issue: 1.44
  • Average comments per pull request: 2.04
  • Merged pull requests: 124
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 11
  • Pull requests: 18
  • Average time to close issues: 15 days
  • Average time to close pull requests: 5 days
  • Issue authors: 3
  • Pull request authors: 5
  • Average comments per issue: 1.64
  • Average comments per pull request: 2.28
  • Merged pull requests: 10
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • cwmeijer (81)
  • elboyran (64)
  • laurasootes (22)
  • WillemSpek (15)
  • geek-yang (15)
  • cpranav93 (13)
  • SarahAlidoost (13)
  • loostrum (8)
  • stefsmeets (6)
  • egpbos (1)
  • ClaireDons (1)
  • gcroci2 (1)
  • APJansen (1)
Pull Request Authors
  • elboyran (54)
  • cwmeijer (34)
  • loostrum (20)
  • SarahAlidoost (20)
  • laurasootes (18)
  • geek-yang (18)
  • stefsmeets (16)
  • egpbos (9)
  • cpranav93 (7)
  • WillemSpek (6)
  • APJansen (1)
Top Labels
Issue Labels
dashboard (36) documentation (22) must have (21) blocking (18) bug (18) research (13) outreach (13) could have (11) should have (10) enhancement (6) standup (5) blocked (3) intern (2) devops (2) old: should have (2) unforeseen extra (1)
Pull Request Labels
dashboard (13) documentation (13) bug (3) blocking (2) must have (2) should have (1) standup (1) outreach (1)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 85 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 1
    (may contain duplicates)
  • Total versions: 38
  • Total maintainers: 2
proxy.golang.org: github.com/dianna-ai/dianna
  • Versions: 19
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 5.5%
Average: 5.7%
Dependent repos count: 5.8%
Last synced: 4 months ago
pypi.org: dianna

Deep Insight And Neural Network Analysis

  • Versions: 19
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 85 Last month
Rankings
Dependent packages count: 10.1%
Forks count: 10.9%
Stargazers count: 11.3%
Average: 15.3%
Dependent repos count: 21.5%
Downloads: 22.7%
Maintainers (2)
Last synced: 4 months ago

Dependencies

.github/actions/install-python-and-package/action.yml actions
  • actions/setup-python v3 composite
.github/workflows/build.yml actions
  • ./.github/actions/install-python-and-package * composite
  • actions/checkout v3 composite
.github/workflows/cffconvert.yml actions
  • actions/checkout v3 composite
  • citation-file-format/cffconvert-github-action 2.0.0 composite
.github/workflows/documentation.yml actions
  • ./.github/actions/install-python-and-package * composite
  • actions/checkout v3 composite
.github/workflows/draft-pdf.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v1 composite
  • openjournals/openjournals-draft-action master composite
.github/workflows/fair-software.yml actions
  • fair-software/howfairis-github-action 0.2.1 composite
.github/workflows/linting.yml actions
  • ./.github/actions/install-python-and-package * composite
  • actions/checkout v3 composite
.github/workflows/markdown-link-check.yml actions
  • actions/checkout main composite
  • gaurav-nelson/github-action-markdown-link-check v1 composite
.github/workflows/markdown_link_check_cron.yml actions
  • actions/checkout main composite
  • gaurav-nelson/github-action-markdown-link-check v1 composite
.github/workflows/notebooks.yml actions
  • ./.github/actions/install-python-and-package * composite
  • actions/checkout v3 composite
.github/workflows/release.yml actions
  • ./.github/actions/install-python-and-package * composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • pypa/gh-action-pypi-publish v1.4.2 composite
.github/workflows/sonarcloud.yml actions
  • ./.github/actions/install-python-and-package * composite
  • SonarSource/sonarcloud-github-action master composite
  • actions/checkout v3 composite