Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.8%) to scientific vocabulary
Keywords
Repository
Quantized BLAS
Basic Info
Statistics
- Stars: 4
- Watchers: 0
- Forks: 2
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
readme.md
QuBLAS
QuBLAS is pronounced as [tɕʰy.blɑ:s]
This library provides simulation capabilities for fixed-point arithmetic operations in C++, tailored for behavioral modeling and accuracy testing of algorithms in a hardware context.
QuBLAS is designed to mimic the behavior of fixed-point arithmetic as closely as possible to what one would expect when running an algorithm on actual hardware such as ASICs or FPGAs. The library supports various quantization modes and overflow handling schemes, allowing users to simulate and explore different numerical and structural scenarios for their designs.
Installation
- QuBLAS is header-only and contains only one header file
QuBLAS.h.
Usage
- Set the C++ standard to C++23 or higher in your project.
```cpp
include "QuBLAS.h"
using namespace QuBLAS;
int main() {
// Define a 17-bit fixed-point number with 8 integer bits, 8 fractional bits and a sign bit.
Qu<intBits<8>, fracBits<8>, isSigned<true>, QuMode<TRN::TCPL>, OfMode<SAT::ZERO>> a = 1.0;
// Tags can be in any order and are all optional.
using type1 = Qu<isSigned<true>, intBits<6>, fracBits<3>, OfMode<SAT::ZERO>>;
type1 q1 = 1.0;
// Negative width is also supported
using type2 = Qu<intBits<6>, fracBits<-3>>;
type2 q2 = 16;
// Use dim to create an any-dimensional tensor.
// dim should be the first template parameter.
using vecType = Qu<dim<4>, intBits<4>>;
vecType v1 = {1.0, 2.0, 3.0, 4.0};
using matType = Qu<dim<4, 4>, type1>;
matType m1 = {1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0,
9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0};
using highDimType = Qu<dim<4, 1, 2>, type1>;
highDimType h1 = {1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0};
// index a tensor with [] operator
auto elem = m1[1, 2];
// Tree-based reduction operations
auto red1 = Qreduce<type2>(v1);
// Per-layer quantization
using list = TypeList<type1, type2>;
auto red2 = Qreduce<list>(m1);
// manully provide the input numbers, can be any type and any number of arguments
auto red3 = Qreduce<type1>(q1, q2, q1, q2);
// use ANUS:: to get access to the LUTs, there are 3 predifined LUTs
// LUT for 1/sqrt(x)
auto lut1 = ANUS::Qtable<ANUS::rsqrtFunc>(q1);
// LUT for 1/x
auto lut2 = ANUS::Qtable<ANUS::reciprocalFunc>(q1);
// LUT for sqrt(x)
auto lut3 = ANUS::Qtable<ANUS::sqrtFunc>(q1);
// the method to define your own LUT
// inline static constexpr auto myLUT = [](double x) { return std::exp(x); };
// BLAS operations under development
matType m3;
Qgemul<QgemulAddArgs<list>, // Tree-based reduction for dot product
QgemulMulArgs<type1>, // Specify quantization mode for multiplication
QgemulTransposedA<true> // Tags in any order and are all optional as well
>(m3, m1, m1);
// create complex type
using c_t_1 = Qcomplex<type1, type2>;
using c_t_2 = Qu<type1, type2>; // identical to Qcomplex<type1, type2>
c_t_1 complex1 = {1, 2};
c_t_2 complex2 = {3, 4};
using complex_vec_t = Qu<dim<3>, c_t_1>;
complex_vec_t complex_vec = {a, a, a};
// complex mul
auto complex_vec_mul = Qmul<TFComplexMul< // calling the method for complex multiplication requireing 3 multipliers and 5 adders
abT<type2>,
cdT<type1>,
baT<type2>,
// abcT<type4>, // all tags are optional
// cdbT<type1>,
badT<type2>,
ABT<type2>,
BCT<type2>>>(complex_vec, complex_vec);
// BitStream
using vec_t_bits = Qu<dim<6>, type1>;
vec_t_bits vec_bits = {1.0, 2.0, 3.0, 4.0};
// vector to std::string
auto res = BitStream<r2l<3>, r2l<2>>(vec_bits);
std::cout << res << std::endl;
// std::string to vector, need to provide the target type
auto z = BitStream<vec_t_bits, r2l<3>, r2l<2>>(res);
z.display();
// more to come ...
return 0;
} ```
Development Status
The library is under active development and the API is subject to change.
Owner
- Name: Auto HDW
- Login: autohdw
- Kind: organization
- Email: contact@autohdw.com
- Website: https://autohdw.com
- Repositories: 8
- Profile: https://github.com/autohdw
LEADS Auto Hardware
GitHub Events
Total
- Watch event: 1
- Delete event: 1
- Member event: 1
- Push event: 37
- Pull request event: 3
- Fork event: 1
- Create event: 3
Last Year
- Watch event: 1
- Delete event: 1
- Member event: 1
- Push event: 37
- Pull request event: 3
- Fork event: 1
- Create event: 3
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 0
- Total pull requests: 2
- Average time to close issues: N/A
- Average time to close pull requests: 2 minutes
- Total issue authors: 0
- Total pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 2
- Average time to close issues: N/A
- Average time to close pull requests: 2 minutes
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
- Niurouxing (11)