https://github.com/avallecam/cdcper

Miscelanea de funciones customizadas a tareas de análisis en CDC Perú

https://github.com/avallecam/cdcper

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.5%) to scientific vocabulary

Keywords

data-manipulation data-mining data-visualization data-wrangling r tidyverse
Last synced: 5 months ago · JSON representation

Repository

Miscelanea de funciones customizadas a tareas de análisis en CDC Perú

Basic Info
Statistics
  • Stars: 1
  • Watchers: 2
  • Forks: 0
  • Open Issues: 1
  • Releases: 0
Topics
data-manipulation data-mining data-visualization data-wrangling r tidyverse
Created over 5 years ago · Last pushed over 4 years ago
Metadata Files
Readme

README.Rmd

---
output: github_document
editor_options: 
  chunk_output_type: console
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
options(tidyverse.quiet = TRUE,warn = -1)
```
# cdcper




El objetivo de `cdcper` es agilizar la creación de variables, gráficos 
e importación bases de datos de relevancia para el Centro Nacional de Epidemiología, 
Prevención y Control 
de Enfermedades [(CDC Perú)](https://www.dge.gob.pe/portalnuevo/).

## Installation



``` r
if(!require("remotes")) install.packages("remotes")
remotes::install_github("avallecam/cdcper")
```

## Main functionalities

### General usefull functions

- `cdc_edades_peru`: crea categorias de edades comunmente usadas.
- `read_reunis_total`: brinda la poblacion del año en curso 
con la base de datos de REUNIS.
- `read_reunis_edad`: brinda la población estratificada por sexo y etapas de vida 
con la base de datos de REUNIS.
- `read_inei_poblacion`: lee archivos de población del INEI.

### Prioritization functions for Data Mining

- `cdc_pareto_lista`: calcula porcentaje de aporte individual y aporte acumulado de elementos en una lista a priorizar.
- `cdc_carga_coalesce`: permite unir (logical connector OR) los listas priorizadas y generar una lista concenso.


### Visualization functions

- `cdc_dotwhiskers_plot`: genera un grafico punto-bigotes con la estimación puntual del promedio e intervalo de confianza de una variable continua por niveles de una variable categórica.

### Data sets availability

- `denominadores_departamento_2000_2020_peru` department level population estimates 2000-2020
- `edad_estandarizada_who` estandardize factors to estandardize raw rates by age


## Example

This is a basic example which shows you how to solve a common problem:

```{r example}
library(cdcper)
## basic example code
```

```{r}
example(cdc_dotwhiskers_plot)
```

```{r,eval=FALSE}
example(cdc_pareto_lista)
```

```{r}
library(tidyverse)
library(charlatan)

n_obs <- 11
set.seed(n_obs)

ch_data_wide <- tibble(
  #names
  name = ch_currency(n = n_obs),
  #values
  category = ch_integer(n = n_obs,min = 0,max = 1) %>% as.logical(),
  # category_02 = ch_integer(n = n_obs,min = 0,max = 1) %>% as.logical(),
  value_01 = ch_beta(n = n_obs,shape1 = 2,shape2 = 8),
  value_02 = ch_integer(n = n_obs,min = 0.7,max = 10)) %>%
  pivot_longer(cols = value_01:value_02,
               names_to = "variable",
               values_to = "numeric") %>%
  mutate(beta = ch_beta(n = n_obs*2,shape1 = 1,shape2 = 8))

cdcper::cdc_pareto_lista(data = ch_data_wide,
                         variable = numeric,
                         pareto_cut = 80) %>%
  avallecam::print_inf()

cdcper::cdc_pareto_lista(data = ch_data_wide,
                         variable = numeric,
                         pareto_cut = 80) %>%
  cdcper::cdc_pareto_plot(pct_ = pct_numeric,
                          cum_ = cum_numeric,
                          variable_value = numeric,
                          variable_label = name) #%>%
  # plotly::ggplotly()
```

```{r}
example(cdc_yearweek_to_date)
```

```{r}
example(cdc_edades_peru)
```

```{r}
example(mutate_ewcdf)
```

```{r}
example(gg_forecast)
```

```{r}
example(cdc_datatable_html)
```


## To-Do

( ) issue: _no visible global function definition_ estas usando muchas nombres de columna no declarados

Owner

  • Name: Andree Valle Campos
  • Login: avallecam
  • Kind: user
  • Location: Lima, Perú

pron: él/he/his, peruano, tusán.

GitHub Events

Total
Last Year

Issues and Pull Requests

Last synced: 12 months ago

All Time
  • Total issues: 1
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 1
  • Total pull request authors: 0
  • Average comments per issue: 0.0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 1
  • Pull request authors: 0
  • Average comments per issue: 0.0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • avallecam (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels