https://github.com/avik-pal/deeplearningbenchmarks
Benchmarks across Deep Learning Frameworks in Julia and Python
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
1 of 1 committers (100.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (2.7%) to scientific vocabulary
Keywords
Repository
Benchmarks across Deep Learning Frameworks in Julia and Python
Basic Info
- Host: GitHub
- Owner: avik-pal
- Language: Julia
- Default Branch: master
- Size: 720 KB
Statistics
- Stars: 25
- Watchers: 6
- Forks: 0
- Open Issues: 2
- Releases: 0
Topics
Metadata Files
README.md
Popular Computer Vision Model Benchmarks
Input Dimensions
- Batch Size = 8, Image = 3 x 224 x 224 (IF NOTHING SPECIFIED / CPU USED)
- Batch Size = 4, Image = 3 x 224 x 224
- Resnet 101
- Resnet 152
GPU USED --- Titan 1080Ti 12 GB
|Model|Framework|Forward Pass|Backward Pass|Total Time|Inference| |:---:|:---:|:---:|:---:|:---:|:---:| |VGG16|Pytorch 0.4.1|0.0245 s|0.0606 s|0.0852 s|0.0234 s| ||Flux 0.6.8+|0.0287 s|0.0760 s|0.1047 s|0.0288 s| |VGG16 BN|Pytorch 0.4.1|0.0271 s|0.0672 s|0.0943 s|0.0273 s| ||Flux 0.6.8+|0.0333 s|0.0818 s|0.1151 s|0.0327 s| |VGG19|Pytorch 0.4.1|0.0281 s|0.0741 s|0.1021 s|0.0280 s| ||Flux 0.6.8+|0.0355 s|0.0923 s|0.1278 s|0.0356 s| |VGG19 BN|Pytorch 0.4.1|0.0321 s|0.0812 s|0.1134 s|0.0325 s| ||Flux 0.6.8+|0.0377 s|0.0965 s|0.1342 s|0.0371 s| |Resnet18|Pytorch 0.4.1|0.0064 s|0.0125 s|0.0190 s|0.0050 s| ||Flux 0.6.8+|0.0079 s|0.0218 s|0.0297 s|0.0079 s| |Resnet34|Pytorch 0.4.1|0.0092 s|0.0216 s|0.0307 s|0.0092 s| ||Flux 0.6.8+|0.0137 s|0.0313 s|0.0450 s|0.0151 s| |Resnet50|Pytorch 0.4.1|0.0155 s|0.0351 s|0.0506 s|0.0152 s| ||Flux 0.6.8+|0.0205 s|0.1795 s|0.2000 s|-| |Resnet101|Pytorch 0.4.1|0.0297 s|0.0379 s|0.0676 s|0.0298 s| ||Flux 0.6.8+|0.0215 s|0.0616 s|0.0831 s|0.0208 s| |Resnet152|Pytorch 0.4.1|0.0431 s|0.05337 s|0.0965 s|0.0429 s| ||Flux 0.6.8+|0.0308 s|0.0807 s|0.1115 s|0.0298 s|
CPU USED --- Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
|Model|Framework|Forward Pass|Backward Pass|Total Time|Inference| |:---:|:---:|:---:|:---:|:---:|:---:| |VGG16|Pytorch 0.4.1|6.6024 s|9.4336 s|16.036 s|6.4216 s| ||Flux 0.6.8+|10.458 s|10.245 s|20.703 s|10.111 s| |VGG16 BN|Pytorch 0.4.1|7.0793 s|9.0536 s|16.132 s|6.7909 s| ||Flux 0.6.8+|29.633 s|18.649 s|49.282 s|24.047 s| |VGG19|Pytorch 0.4.1|8.3075 s|10.899 s|19.207 s|8.0593 s| ||Flux 0.6.8+|12.226 s|12.457 s|24.683 s|12.029 s| |VGG19 BN|Pytorch 0.4.1|8.7794 s|12.739 s|21.519 s|8.4044 s| ||Flux 0.6.8+|28.518 s|21.464 s|49.982 s|22.649 s| <!-- |Resnet18|Pytorch 0.4.1||||| ||Flux 0.6.8+||||| |Resnet34|Pytorch 0.4.1||||| ||Flux 0.6.8+||||| |Resnet50|Pytorch 0.4.1||||| ||Flux 0.6.8+||||| |Resnet101|Pytorch 0.4.1||||| ||Flux 0.6.8+||||| |Resnet152|Pytorch 0.4.1||||| ||Flux 0.6.8+||||| -->
Individual Layer Benchmarks
Layer Descriptions
- Conv3x3/1 = Conv2d, 3x3 Kernel, 1x1 Padding, 1x1 Stride
- Conv5x5/1 = Conv2d, 5x5 Kernel, 2x2 Padding, 1x1 Stride
- Conv3x3/2 = Conv2d, 3x3 Kernel, 1x1 Padding, 2x2 Stride
- Conv5x5/2 = Conv2d, 5x5 Kernel, 2x2 Padding, 2x2 Stride
- Dense = 1024 => 512
- BatchNorm = BatchNorm2d
GPU USED --- Titan 1080Ti 12 GB
|Layer|Framework|Forward Pass|Backward Pass|Total Time| |:---:|:---:|:---:|:---:|:---:| |Conv3x3/1|Pytorch 0.4.1|0.2312 ms|0.5359 ms|0.7736 ms| ||Flux 0.6.8+|0.1984 ms|0.7640 ms|0.9624 ms| |Conv5x5/1|Pytorch 0.4.1|0.2667 ms|0.5345 ms|0.8299 ms| ||Flux 0.6.8+|0.2065 ms|0.8075 ms|1.014 ms| |Conv3x3/2|Pytorch 0.4.1|0.1170 ms|0.2203 ms|0.3376 ms| ||Flux 0.6.8+|0.0927 ms|0.5988 ms|0.6915 ms| |Conv5x5/2|Pytorch 0.4.1|0.1233 ms|0.2162 ms|0.3407 ms| ||Flux 0.6.8+|0.0941 ms|0.6515 ms|0.7456 ms| |Dense|Pytorch 0.4.1|0.0887 ms|0.1523 ms|0.2411 ms| ||Flux 0.6.8+|0.0432 ms|0.2044 ms|0.2476 ms| |BatchNorm|Pytorch 0.4.1|0.1096 ms|0.1999 ms|0.3095 ms| ||Flux 0.6.8+|0.2211 ms|0.2849 ms|0.5060 ms|
NOTE
To reproduce the benchmarks checkout Flux 0.6.8+ avik-pal/cudnn_batchnorm and CuArrays master.
Since the Batchnorm GPU is broken for Flux 0.6.8+ master so we cannot perform the benchmarks using that.
Owner
- Name: Avik Pal
- Login: avik-pal
- Kind: user
- Location: Cambridge, MA
- Company: Massachusetts Institute of Technology
- Website: https://avik-pal.github.io
- Twitter: avikpal1410
- Repositories: 46
- Profile: https://github.com/avik-pal
PhD Student @mit || Prev: BTech CSE IITK
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Committers
Last synced: over 1 year ago
Top Committers
| Name | Commits | |
|---|---|---|
| Avik Pal | a****l@i****n | 15 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 7 months ago
All Time
- Total issues: 3
- Total pull requests: 1
- Average time to close issues: 3 months
- Average time to close pull requests: about 8 hours
- Total issue authors: 3
- Total pull request authors: 1
- Average comments per issue: 6.33
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- avik-pal (1)
- jekbradbury (1)
- johnnychen94 (1)
Pull Request Authors
- avik-pal (1)