https://github.com/awslabs/aws-virtual-gpu-device-plugin
AWS virtual gpu device plugin provides capability to use smaller virtual gpus for your machine learning inference workloads
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.2%) to scientific vocabulary
Keywords
Repository
AWS virtual gpu device plugin provides capability to use smaller virtual gpus for your machine learning inference workloads
Basic Info
- Host: GitHub
- Owner: awslabs
- License: apache-2.0
- Language: Jupyter Notebook
- Default Branch: master
- Homepage: https://aws.amazon.com/blogs/opensource/virtual-gpu-device-plugin-for-inference-workload-in-kubernetes/
- Size: 1.43 MB
Statistics
- Stars: 204
- Watchers: 49
- Forks: 31
- Open Issues: 15
- Releases: 2
Topics
Metadata Files
README.md
Virtual GPU device plugin for Kubernetes
The virtual device plugin for Kubernetes is a Daemonset that allows you to automatically: - Expose arbitrary number of virtual GPUs on GPU nodes of your cluster. - Run ML serving containers backed by Accelerator with low latency and low cost in your Kubernetes cluster.
This repository contains AWS virtual GPU implementation of the Kubernetes device plugin.
Prerequisites
The list of prerequisites for running the virtual device plugin is described below: * NVIDIA drivers ~= 361.93 * nvidia-docker version > 2.0 (see how to install and it's prerequisites) * docker configured with nvidia as the default runtime. * Kubernetes version >= 1.10
Limitations
- This solution is build on top of Volta Multi-Process Service(MPS). You can only use it on instances types with Tesla-V100 or newer. (Only Amazon EC2 P3 Instances and Amazon EC2 G4 Instances now)
- Virtual GPU device plugin by default set GPU compute mode to
EXCLUSIVE_PROCESSwhich means GPU is assigned to MPS process, individual process threads can submit work to GPU concurrently via MPS server. This GPU can not be used for other purpose. - Virtual GPU device plugin only on single physical GPU instance like P3.2xlarge if you request
k8s.amazonaws.com/vgpumore than 1 in the workloads. - Virtual GPU device plugin can not work with Nvidia device plugin together. You can label nodes and use selector to install Virtual GPU device plugin.
High Level Design

Quick Start
Label GPU node groups
bash
kubectl label node <your_k8s_node_name> k8s.amazonaws.com/accelerator=vgpu
Enabling virtual GPU Support in Kubernetes
Update node selector label in the manifest file to match with labels of your GPU node group, then apply it to Kubernetes.
shell
$ kubectl create -f https://raw.githubusercontent.com/awslabs/aws-virtual-gpu-device-plugin/v0.1.1/manifests/device-plugin.yml
Running GPU Jobs
Virtual NVIDIA GPUs can now be consumed via container level resource requirements using the resource name k8s.amazonaws.com/vgpu:
yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: resnet-deployment
spec:
replicas: 3
selector:
matchLabels:
app: resnet-server
template:
metadata:
labels:
app: resnet-server
spec:
# hostIPC is required for MPS communication
hostIPC: true
containers:
- name: resnet-container
image: seedjeffwan/tensorflow-serving-gpu:resnet
args:
# Make sure you set limit based on the vGPU account to avoid tf-serving process occupy all the gpu memory
- --per_process_gpu_memory_fraction=0.2
env:
- name: MODEL_NAME
value: resnet
ports:
- containerPort: 8501
# Use virtual gpu resource here
resources:
limits:
k8s.amazonaws.com/vgpu: 1
volumeMounts:
- name: nvidia-mps
mountPath: /tmp/nvidia-mps
volumes:
- name: nvidia-mps
hostPath:
path: /tmp/nvidia-mps
WARNING: if you don't request GPUs when using the device plugin all the GPUs on the machine will be exposed inside your container.
Check the full example here
Development
Please check Development for more details.
Credits
The project idea comes from @RenaudWasTaken comment in kubernetes/kubernetes#52757 and Alibaba’s solution from @cheyang GPU Sharing Scheduler Extender Now Supports Fine-Grained Kubernetes Clusters.
Reference
AWS:
- 28 Nov 2018 - Amazon Elastic Inference – GPU-Powered Deep Learning Inference Acceleration
- 2 Dec 2018 - Amazon Elastic Inference - Reduce Deep Learning inference costs by 75%
- 30 JUL 2019 - Running Amazon Elastic Inference Workloads on Amazon ECS
- 06 SEP 2019 - Optimizing TensorFlow model serving with Kubernetes and Amazon Elastic Inference
- 03 DEC 2019 - Introducing Amazon EC2 Inf1 Instances, high performance and the lowest cost machine learning inference in the cloud
Community:
- Nvidia Turing GPU Architecture
- Nvidia Tesla V100 GPU Architecture
- Is sharing GPU to multiple containers feasible?
- Fractional GPUs: Software-based Compute and Memory Bandwidth Reservation for GPUs
- GPU Sharing Scheduler Extender Now Supports Fine-Grained Kubernetes Clusters
- GPU Sharing for Machine Learning Workload on Kubernetes - Henry Zhang & Yang Yu, VMware
- Deep Learning inference cost optimization practice on Kubernetes - Tencent
- Gaia Scheduler: A Kubernetes-Based Scheduler Framework
License
This project is licensed under the Apache-2.0 License.
Owner
- Name: Amazon Web Services - Labs
- Login: awslabs
- Kind: organization
- Location: Seattle, WA
- Website: http://amazon.com/aws/
- Repositories: 914
- Profile: https://github.com/awslabs
AWS Labs
GitHub Events
Total
- Watch event: 4
- Fork event: 1
Last Year
- Watch event: 4
- Fork event: 1
Issues and Pull Requests
Last synced: almost 2 years ago
All Time
- Total issues: 20
- Total pull requests: 14
- Average time to close issues: 3 months
- Average time to close pull requests: 3 months
- Total issue authors: 19
- Total pull request authors: 7
- Average comments per issue: 1.15
- Average comments per pull request: 0.43
- Merged pull requests: 10
- Bot issues: 0
- Bot pull requests: 3
Past Year
- Issues: 1
- Pull requests: 2
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 2
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 1
Top Authors
Issue Authors
- walkley (2)
- FanniSun (1)
- t-ibayashi-safie (1)
- vikranthkeerthipati (1)
- parth-chudasama (1)
- jaggerwang (1)
- Narsil (1)
- amybachir (1)
- Apokleos (1)
- stephanrb3 (1)
- nneram (1)
- valafon (1)
- cyyeh (1)
- stevensu1977 (1)
- josephlee518 (1)
Pull Request Authors
- Jeffwan (5)
- dependabot[bot] (3)
- walkley (2)
- parisnakitakejser (2)
- Wei-1 (1)
- hemandee (1)
- linjungz (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
- Total downloads: unknown
- Total docker downloads: 469,718
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 2
proxy.golang.org: github.com/awslabs/aws-virtual-gpu-device-plugin
- Homepage: https://github.com/awslabs/aws-virtual-gpu-device-plugin
- Documentation: https://pkg.go.dev/github.com/awslabs/aws-virtual-gpu-device-plugin#section-documentation
- License: Apache-2.0
-
Latest release: v0.1.1
published almost 6 years ago
Rankings
Dependencies
- github.com/NVIDIA/gpu-monitoring-tools v0.0.0-20191011002627-7a750c7e4f8b
- github.com/fsnotify/fsnotify v1.4.7
- github.com/gogo/protobuf v1.3.0
- github.com/golang/protobuf v1.3.2
- golang.org/x/net v0.0.0-20190812203447-cdfb69ac37fc
- google.golang.org/genproto v0.0.0-20190926190326-7ee9db18f195
- google.golang.org/grpc v1.24.0
- k8s.io/api v0.0.0
- k8s.io/api=>k8s.io/api v0.0.0-20190819141258-3544db3b9e44
- k8s.io/apiextensions-apiserver=>k8s.io/apiextensions-apiserver v0.0.0-20190819143637-0dbe462fe92d
- k8s.io/apimachinery v0.0.0
- k8s.io/apimachinery=>k8s.io/apimachinery v0.0.0-20190817020851-f2f3a405f61d
- k8s.io/apiserver=>k8s.io/apiserver v0.0.0-20190819142446-92cc630367d0
- k8s.io/cli-runtime=>k8s.io/cli-runtime v0.0.0-20190819144027-541433d7ce35
- k8s.io/client-go v0.0.0
- k8s.io/client-go=>k8s.io/client-go v0.0.0-20190819141724-e14f31a72a77
- k8s.io/cloud-provider=>k8s.io/cloud-provider v0.0.0-20190819145148-d91c85d212d5
- k8s.io/cluster-bootstrap=>k8s.io/cluster-bootstrap v0.0.0-20190819145008-029dd04813af
- k8s.io/code-generator=>k8s.io/code-generator v0.0.0-20190612205613-18da4a14b22b
- k8s.io/component-base=>k8s.io/component-base v0.0.0-20190819141909-f0f7c184477d
- k8s.io/cri-api=>k8s.io/cri-api v0.0.0-20190817025403-3ae76f584e79
- k8s.io/csi-translation-lib=>k8s.io/csi-translation-lib v0.0.0-20190819145328-4831a4ced492
- k8s.io/kube-aggregator=>k8s.io/kube-aggregator v0.0.0-20190819142756-13daafd3604f
- k8s.io/kube-controller-manager=>k8s.io/kube-controller-manager v0.0.0-20190819144832-f53437941eef
- k8s.io/kube-proxy=>k8s.io/kube-proxy v0.0.0-20190819144346-2e47de1df0f0
- k8s.io/kube-scheduler=>k8s.io/kube-scheduler v0.0.0-20190819144657-d1a724e0828e
- k8s.io/kubectl=>k8s.io/kubectl v0.0.0-20190602132728-7075c07e78bf
- k8s.io/kubelet=>k8s.io/kubelet v0.0.0-20190819144524-827174bad5e8
- k8s.io/kubernetes v1.16.0
- k8s.io/legacy-cloud-providers=>k8s.io/legacy-cloud-providers v0.0.0-20190819145509-592c9a46fd00
- k8s.io/metrics=>k8s.io/metrics v0.0.0-20190819143841-305e1cef1ab1
- k8s.io/node-api=>k8s.io/node-api v0.0.0-20190819145652-b61681edbd0a
- k8s.io/sample-apiserver=>k8s.io/sample-apiserver v0.0.0-20190819143045-c84c31c165c4
- k8s.io/sample-cli-plugin=>k8s.io/sample-cli-plugin v0.0.0-20190819144209-f9ca4b649af0
- k8s.io/sample-controller=>k8s.io/sample-controller v0.0.0-20190819143301-7c475f5e1313
- k8s.io/utils=>k8s.io/utils v0.0.0-20190221042446-c2654d5206da
- 552 dependencies
- amazonlinux latest build
- golang 1.13 build
- tensorflow/serving 1.15.0-gpu build