https://github.com/b612-asteroid-institute/cutouts
Postage stamps along the trajectory of a moving object
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.7%) to scientific vocabulary
Keywords
Repository
Postage stamps along the trajectory of a moving object
Basic Info
Statistics
- Stars: 3
- Watchers: 3
- Forks: 2
- Open Issues: 7
- Releases: 1
Topics
Metadata Files
README.md
cutouts: postage stamps along the trajectory of a moving object
A Python package by the Asteroid Institute, a program of the B612 Foundation
Installation
Docker
You can build and use cutouts using the included Dockerfile and docker-compose.yml:
docker compose build cutouts
docker compose run -it cutouts
Conda
To get the latest released version and install it into a conda environment:
conda install -c asteroid-institute cutouts
Source / Pip
To install the latest from source:
pip install git+https://github.com/B612-Asteroid-Institute/cutouts.git@main#egg=cutouts
Example
To reproduce the example that ships with the repository: ``` import pandas as pd import matplotlib.pyplot as plt from astropy.time import Time from cutouts import getcutouts from cutouts import plotcutouts
Read in observations and predicted ephemerides
observations = pd.readcsv("examples/2013RR163.csv", index_col=False)
Extract relevant quantities
ra = observations["predradeg"].values dec = observations["preddecdeg"].values vra = observations["predvradegpday"].values vdec = observations["predvdecdegpday"].values obscode = observations["obscode"].values mag = observations["mag"].values filter = observations["filter"].values magsigma = observations["magsigma"].values times = Time(observations["mjdutc"].values, scale="utc", format="mjd") exposureid = observations["exposure_id"].values
Find cutouts and save them
NSCSIAURL = "https://datalab.noirlab.edu/sia/nscdr2" cutoutpaths, cutoutresults = getcutouts( times, ra, dec, siaurl=NSCSIAURL, exposureid=exposureid, outdir="examples/cutouts" ) exposuretime = cutoutresults["exptime"].values.astype(int)
Plot cutouts
fig, ax = plotcutouts(
cutoutpaths,
times,
ra, dec,
vra, vdec,
filters=filter,
mag=mag,
magsigma=magsigma,
exposuretime=exposuretime,
cutoutheight=75,
cutoutwidth=75,
)
fig.suptitle(f"(2013 RR163)", y=1.0)
fig.savefig(f"examples/2013RR163.jpg", bboxinches="tight")
```
cutouts also comes with a simple command line interface (CLI) to quickly produce a grid of cutouts from a file
of predicted ephemerides and observations.
cutouts examples/2013_RR163.csv --out_dir examples/cli_test
Owner
- Name: Asteroid Institute
- Login: B612-Asteroid-Institute
- Kind: organization
- Website: www.b612foundation.org
- Twitter: b612foundation
- Repositories: 10
- Profile: https://github.com/B612-Asteroid-Institute
B612’s Asteroid Institute brings together scientists+engineers to develop tools to understand & map our solar system + protect our planet from asteroid impacts
GitHub Events
Total
- Issue comment event: 1
Last Year
- Issue comment event: 1
Dependencies
- actions/checkout v2 composite
- conda-incubator/setup-miniconda v2 composite
- actions/checkout v2 composite
- actions/checkout v3 composite
- docker/setup-buildx-action v2 composite
- jpribyl/action-docker-layer-caching v0.1.1 composite
- actions/checkout v2 composite
- actions/setup-python v4 composite
- ubuntu jammy build
- annotated-types ==0.6.0
- astropy ==6.0.0
- astropy-iers-data ==0.2024.1.22.0.30.30
- backoff ==2.2.1
- certifi ==2023.11.17
- cfgv ==3.4.0
- charset-normalizer ==3.3.2
- contourpy ==1.2.0
- coverage ==7.4.0
- cycler ==0.12.1
- distlib ==0.3.8
- filelock ==3.13.1
- fonttools ==4.47.2
- identify ==2.5.33
- idna ==3.6
- imageio ==2.33.1
- iniconfig ==2.0.0
- kiwisolver ==1.4.5
- matplotlib ==3.8.2
- nodeenv ==1.8.0
- numpy ==1.26.3
- packaging ==23.2
- pandas ==2.2.0
- pillow ==10.2.0
- platformdirs ==4.1.0
- pluggy ==1.4.0
- pre-commit ==3.6.0
- pydantic ==2.5.3
- pydantic-core ==2.14.6
- pyerfa ==2.0.1.1
- pyparsing ==3.1.1
- pytest ==7.4.4
- pytest-cov ==4.1.0
- python-dateutil ==2.8.2
- pytz ==2023.3.post1
- pyvo ==1.5
- pyyaml ==6.0.1
- requests ==2.31.0
- six ==1.16.0
- typing-extensions ==4.9.0
- tzdata ==2023.4
- urllib3 ==2.1.0
- virtualenv ==20.25.0