Phitter
Phitter: A library designed to streamline the process of fitting and analyzing probability distributions - Published in JOSS (2025)
Science Score: 39.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (15.0%) to scientific vocabulary
Keywords
Scientific Fields
Repository
Phitter is a python library for accurately fitting statistical distributions to datasets, offering intuitive usage, comprehensive visualization, and support for multiple distributions to enhance data analysis projects.
Basic Info
- Host: GitHub
- Owner: phitter-hub
- License: mit
- Language: Jupyter Notebook
- Default Branch: main
- Homepage: https://phitter.io/
- Size: 410 MB
Statistics
- Stars: 30
- Watchers: 1
- Forks: 2
- Open Issues: 0
- Releases: 6
Topics
Metadata Files
README.md
⭐⭐⭐ If you find this project useful, giving it a star on GitHub. It really helps! ⭐⭐⭐
Phitter analyzes datasets and determines the best analytical probability distributions that represent them. Phitter studies over 80 probability distributions, both continuous and discrete, 3 goodness-of-fit tests, and interactive visualizations. For each selected probability distribution, a standard modeling guide is provided along with spreadsheets that detail the methodology for using the chosen distribution in data science, operations research, and artificial intelligence.
Additionally, Phitter enables advanced process simulations, allowing to model and visualize key performance metrics such as minimum observation times. It facilitates the simulation of queuing systems with configurable parameters, including the number of servers, system capacity, maximum population size, and service discipline. Supported queuing models encompass FIFO, LIFO and PBS, ensuring adaptability to various operational and research applications.
This repository contains the implementation of the python library and the kernel of Phitter Web
📄 Documentation
Find the complete Phitter documentation here.
Installation
Requirements
console
python: >=3.9
PyPI
console
pip install phitter
Usage
1. Fit Notebook's Tutorials
| Tutorial | Notebooks |
| :------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Fit Continuous | |
| Fit Discrete |
|
| Fit Accelerate [Sample>100K] |
|
| Fit Specific Distribution |
|
| Working Distribution |
|
2. Simulation Notebook's Tutorials
| Tutorial | Notebooks |
| :-----------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Process Simulation | |
| Own Distribution |
|
| Queue Simulation First-In-First-Out (FIFO) |
|
| Queue Simulation Last-In-First-Out (LIFO) |
|
| Queue Simulation Priority-Based Service (PBS) |
|
Documentation
Documentation Fit Module
### General Fit ```python import phitter ## Define your dataset data: list[int | float] = [...] ## Make a continuous fit using Phitter phi = phitter.Phitter(data=data) phi.fit() ``` ### Full continuous implementation ```python import phitter ## Define your dataset data: list[int | float] = [...] ## Make a continuous fit using Phitter phi = phitter.Phitter( data=data, fit_type="continuous", num_bins=15, confidence_level=0.95, minimum_sse=1e-2, distributions_to_fit=["beta", "normal", "fatigue_life", "triangular"], ) phi.fit(n_workers=6) ``` ### Full discrete implementation ```python import phitter ## Define your dataset data: list[int | float] = [...] ## Make a discrete fit using Phitter phi = phitter.Phitter( data=data, fit_type="discrete", confidence_level=0.95, minimum_sse=1e-2, distributions_to_fit=["binomial", "geometric"], ) phi.fit(n_workers=2) ``` ### Phitter: properties and methods ```python import phitter ## Define your dataset data: list[int | float] = [...] ## Make a fit using Phitter phi = phitter.Phitter(data=data) phi.fit(n_workers=2) ## Global methods and properties phi.summarize(k: int) -> pandas.DataFrame phi.summarize_info(k: int) -> pandas.DataFrame phi.best_distribution -> dict phi.sorted_distributions_sse -> dict phi.not_rejected_distributions -> dict phi.df_sorted_distributions_sse -> pandas.DataFrame phi.df_not_rejected_distributions -> pandas.DataFrame ## Specific distribution methods and properties phi.get_parameters(id_distribution: str) -> dict phi.get_test_chi_square(id_distribution: str) -> dict phi.get_test_kolmmogorov_smirnov(id_distribution: str) -> dict phi.get_test_anderson_darling(id_distribution: str) -> dict phi.get_sse(id_distribution: str) -> float phi.get_n_test_passed(id_distribution: str) -> int phi.get_n_test_null(id_distribution: str) -> int ``` ### Histogram Plot ```python import phitter data: list[int | float] = [...] phi = phitter.Phitter(data=data) phi.fit() phi.plot_histogram() ```
### Histogram PDF Dsitributions Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.plot_histogram_distributions()
```
### Histogram PDF Dsitribution Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.plot_distribution("beta")
```
### ECDF Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.plot_ecdf()
```
### ECDF Distribution Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.plot_ecdf_distribution("beta")
```
### QQ Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.qq_plot("beta")
```
### QQ - Regression Plot
```python
import phitter
data: list[int | float] = [...]
phi = phitter.Phitter(data=data)
phi.fit()
phi.qq_plot_regression("beta")
```
### Working with distributions: Methods and properties
```python
import phitter
distribution = phitter.continuous.Beta({"alpha": 5, "beta": 3, "A": 200, "B": 1000})
## CDF, PDF, PPF, PMF receive float or numpy.ndarray. For discrete distributions PMF instead of PDF. Parameters notation are in description of ditribution
distribution.cdf(752) # -> 0.6242831129533498
distribution.pdf(388) # -> 0.0002342575686629883
distribution.ppf(0.623) # -> 751.5512889417921
distribution.sample(2) # -> [550.800114 514.85410326]
## STATS
distribution.mean # -> 700.0
distribution.variance # -> 16666.666666666668
distribution.standard_deviation # -> 129.09944487358058
distribution.skewness # -> -0.3098386676965934
distribution.kurtosis # -> 2.5854545454545454
distribution.median # -> 708.707130841534
distribution.mode # -> 733.3333333333333
```
## Continuous Distributions
#### [1. PDF File Documentation Continuous Distributions](https://github.com/phitter-hub/phitter-kernel/blob/main/distributions_documentation/continuous/document_continuous_distributions/phitter_continuous_distributions.pdf)
#### 2. Resources Continuous Distributions
| Distribution | Phitter Playground | Excel File | Google Sheets Files |
| :------------------------ | :----------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------- |
| alpha | ▶️[phitter:alpha](https://phitter.io/distributions/continuous/alpha) | 📊[alpha.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/alpha.xlsx) | 🌐[gs:alpha](https://docs.google.com/spreadsheets/d/1yRovxx1YbqgEul65DjjXetysc_4qgX2a_2NQQA1AxCA) |
| arcsine | ▶️[phitter:arcsine](https://phitter.io/distributions/continuous/arcsine) | 📊[arcsine.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/arcsine.xlsx) | 🌐[gs:arcsine](https://docs.google.com/spreadsheets/d/1q8SKX4gmSbpGzimRvjopzaZ4KrEV5NY1EPmf1G1T7NQ) |
| argus | ▶️[phitter:argus](https://phitter.io/distributions/continuous/argus) | 📊[argus.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/argus.xlsx) | 🌐[gs:argus](https://docs.google.com/spreadsheets/d/1u2x7IFUSB7rEyhs7s6-C2btT1Bk5aCr4WiUYEML-8xs) |
| beta | ▶️[phitter:beta](https://phitter.io/distributions/continuous/beta) | 📊[beta.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/beta.xlsx) | 🌐[gs:beta](https://docs.google.com/spreadsheets/d/1P7NDy-9toV3dv64gabnr8l2NjB1xt_Ani5IVMTx3gyU) |
| beta_prime | ▶️[phitter:beta_prime](https://phitter.io/distributions/continuous/beta_prime) | 📊[beta_prime.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/beta_prime.xlsx) | 🌐[gs:beta_prime](https://docs.google.com/spreadsheets/d/1-8cKeS9D6YixQE_uLig7UarXcoQoE-341yHDj8sfXA8) |
| beta_prime_4p | ▶️[phitter:beta_prime_4p](https://phitter.io/distributions/continuous/beta_prime_4p) | 📊[beta_prime_4p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/beta_prime_4p.xlsx) | 🌐[gs:beta_prime_4p](https://docs.google.com/spreadsheets/d/1vlaZrj_jX9oNGwjW0o4Z1AUTuUTGE8Z-Akis_wb7Jq4) |
| bradford | ▶️[phitter:bradford](https://phitter.io/distributions/continuous/bradford) | 📊[bradford.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/bradford.xlsx) | 🌐[gs:bradford](https://docs.google.com/spreadsheets/d/1kI8b05IXur3I9SUJdrbYIdv7zMdzVxVGPWx6sK6YmuU) |
| burr | ▶️[phitter:burr](https://phitter.io/distributions/continuous/burr) | 📊[burr.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/burr.xlsx) | 🌐[gs:burr](https://docs.google.com/spreadsheets/d/1vhY3l3VAgBj9BQT1yE3meRTmEZP3HXjjm30nxDKCwCI) |
| burr_4p | ▶️[phitter:burr_4p](https://phitter.io/distributions/continuous/burr_4p) | 📊[burr_4p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/burr_4p.xlsx) | 🌐[gs:burr_4p](https://docs.google.com/spreadsheets/d/1tEk3O2yvANj_PlLqACuwvRSqYYGQVRFH1SPMdLGYnz4) |
| cauchy | ▶️[phitter:cauchy](https://phitter.io/distributions/continuous/cauchy) | 📊[cauchy.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/cauchy.xlsx) | 🌐[gs:cauchy](https://docs.google.com/spreadsheets/d/1xoJJvuSvfg-umC7Ogio9fde1l4TiWuAlR2IxucYK0y8) |
| chi_square | ▶️[phitter:chi_square](https://phitter.io/distributions/continuous/chi_square) | 📊[chi_square.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/chi_square.xlsx) | 🌐[gs:chi_square](https://docs.google.com/spreadsheets/d/1VatJuUON_2qghjPEYMdcjGE7TYbYqduzgdYe5YNyVf4) |
| chi_square_3p | ▶️[phitter:chi_square_3p](https://phitter.io/distributions/continuous/chi_square_3p) | 📊[chi_square_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/chi_square_3p.xlsx) | 🌐[gs:chi_square_3p](https://docs.google.com/spreadsheets/d/15tf3ZKbEgR3JWQRbMT2OaNij3INTGGUuNsR01NCDFJw) |
| dagum | ▶️[phitter:dagum](https://phitter.io/distributions/continuous/dagum) | 📊[dagum.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/dagum.xlsx) | 🌐[gs:dagum](https://docs.google.com/spreadsheets/d/1qct7LByxY_z2-Rl-pWFG1LQsUxW8VQaCgLizn93YPxk) |
| dagum_4p | ▶️[phitter:dagum_4p](https://phitter.io/distributions/continuous/dagum_4p) | 📊[dagum_4p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/dagum_4p.xlsx) | 🌐[gs:dagum_4p](https://docs.google.com/spreadsheets/d/1ZkKqvVdy7CvhvXwK830F6GWJrdNxoXBxJYeFD6XC2DM) |
| erlang | ▶️[phitter:erlang](https://phitter.io/distributions/continuous/erlang) | 📊[erlang.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/erlang.xlsx) | 🌐[gs:erlang](https://docs.google.com/spreadsheets/d/1uG3Otntnm3cvMSkhkEiBVKuFn1pCLSWmiCxfN01D824) |
| erlang_3p | ▶️[phitter:erlang_3p](https://phitter.io/distributions/continuous/erlang_3p) | 📊[erlang_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/erlang_3p.xlsx) | 🌐[gs:erlang_3p](https://docs.google.com/spreadsheets/d/1EvFPyOAL-TPQyNf7sAXfqgHqap8sGynH0XxrLRVP12M) |
| error_function | ▶️[phitter:error_function](https://phitter.io/distributions/continuous/error_function) | 📊[error_function.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/error_function.xlsx) | 🌐[gs:error_function](https://docs.google.com/spreadsheets/d/1QT1vSgTWVgDmNz4FrH3fhwRGpgvPohgqZSCADHfBXkM) |
| exponential | ▶️[phitter:exponential](https://phitter.io/distributions/continuous/exponential) | 📊[exponential.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/exponential.xlsx) | 🌐[gs:exponential](https://docs.google.com/spreadsheets/d/1c8aCgHTq3fEyIkVM1Ph3fzebxQMuourz1UkWbH4h3HA) |
| exponential_2p | ▶️[phitter:exponential_2p](https://phitter.io/distributions/continuous/exponential_2p) | 📊[exponential_2p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/exponential_2p.xlsx) | 🌐[gs:exponential_2p](https://docs.google.com/spreadsheets/d/1XtrdS8iSCM1l33rbaXSz1uWZ3vnQsYPK-07NYE-ZYBs) |
| f | ▶️[phitter:f](https://phitter.io/distributions/continuous/f) | 📊[f.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/f.xlsx) | 🌐[gs:f](https://docs.google.com/spreadsheets/d/137gYI8B6MDnqFoQ4bY1crdpFSKtPzRgaJS564SY_CUY) |
| f_4p | ▶️[phitter:f_4p](https://phitter.io/distributions/continuous/f_4p) | 📊[f_4p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/f_4p.xlsx) | 🌐[gs:f_4p](https://docs.google.com/spreadsheets/d/11MgyMqzOyGNtFLdGviRTeNhAQMYBCJ8QRMHGxoPCzwM) |
| fatigue_life | ▶️[phitter:fatigue_life](https://phitter.io/distributions/continuous/fatigue_life) | 📊[fatigue_life.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/fatigue_life.xlsx) | 🌐[gs:fatigue_life](https://docs.google.com/spreadsheets/d/1j-U_YMX89VHe2jVq3pazpzqYeA1j1zopW22C9yJcPS0) |
| folded_normal | ▶️[phitter:folded_normal](https://phitter.io/distributions/continuous/folded_normal) | 📊[folded_normal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/folded_normal.xlsx) | 🌐[gs:folded_normal](https://docs.google.com/spreadsheets/d/17NlSnru_46J8pSjxMPLDlzxoG2fPKWjeFvTh0ydfX4k) |
| frechet | ▶️[phitter:frechet](https://phitter.io/distributions/continuous/frechet) | 📊[frechet.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/frechet.xlsx) | 🌐[gs:frechet](https://docs.google.com/spreadsheets/d/1PNGvHImwOFIragM_hHrQJcTN7OcqCKFoHKXlPq76fnI) |
| gamma | ▶️[phitter:gamma](https://phitter.io/distributions/continuous/gamma) | 📊[gamma.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/gamma.xlsx) | 🌐[gs:gamma](https://docs.google.com/spreadsheets/d/1HgD3a1zOml7Hy9PMVvFwQwrbmbs8iPbH-zQMowH0LVE) |
| gamma_3p | ▶️[phitter:gamma_3p](https://phitter.io/distributions/continuous/gamma_3p) | 📊[gamma_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/gamma_3p.xlsx) | 🌐[gs:gamma_3p](https://docs.google.com/spreadsheets/d/1NkyFZFOMzk2V9qkFEI_zhGUGWiGV-K9vU-RLaFB7ip8) |
| generalized_extreme_value | ▶️[phitter:gen_extreme_value](https://phitter.io/distributions/continuous/generalized_extreme_value) | 📊[gen_extreme_value.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_extreme_value.xlsx) | 🌐[gs:gen_extreme_value](https://docs.google.com/spreadsheets/d/19qHvnTJGVVZ7zhi-yhauCOGhu0iAdkYJ5FFgwv1q5OI) |
| generalized_gamma | ▶️[phitter:gen_gamma](https://phitter.io/distributions/continuous/generalized_gamma) | 📊[gen_gamma.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_gamma.xlsx) | 🌐[gs:gen_gamma](https://docs.google.com/spreadsheets/d/1xx8b_VSG4jznZzaKq2yKumw5VcNX5Wj86YqLO7n4S5A) |
| generalized_gamma_4p | ▶️[phitter:gen_gamma_4p](https://phitter.io/distributions/continuous/generalized_gamma_4p) | 📊[gen_gamma_4p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_gamma_4p.xlsx) | 🌐[gs:gen_gamma_4p](https://docs.google.com/spreadsheets/d/1TN72MSkZ2bRyoNy29h4VIxFudXAroSi1PnmFijPvO0M) |
| generalized_logistic | ▶️[phitter:gen_logistic](https://phitter.io/distributions/continuous/generalized_logistic) | 📊[gen_logistic.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_logistic.xlsx) | 🌐[gs:gen_logistic](https://docs.google.com/spreadsheets/d/1vwppGjHbwEA3xd3OtV51sPZhpOWyzmPIOV_Tued-I1Y) |
| generalized_normal | ▶️[phitter:gen_normal](https://phitter.io/distributions/continuous/generalized_normal) | 📊[gen_normal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_normal.xlsx) | 🌐[gs:gen_normal](https://docs.google.com/spreadsheets/d/1_77JSp0mhHxqvQugVRRWIoQOTa91WdyNqNmOfDNuSfA) |
| generalized_pareto | ▶️[phitter:gen_pareto](https://phitter.io/distributions/continuous/generalized_pareto) | 📊[gen_pareto.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/generalized_pareto.xlsx) | 🌐[gs:gen_pareto](https://docs.google.com/spreadsheets/d/1E28WYhX4Ba9Nj-JNxqAm-Gh7o1EOOIOwXIdCFl1PXI0) |
| gibrat | ▶️[phitter:gibrat](https://phitter.io/distributions/continuous/gibrat) | 📊[gibrat.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/gibrat.xlsx) | 🌐[gs:gibrat](https://docs.google.com/spreadsheets/d/1pM7skBPnH8V3GCJo0iSst46Oc2OzqWdX2qATYBqc_GQ) |
| gumbel_left | ▶️[phitter:gumbel_left](https://phitter.io/distributions/continuous/gumbel_left) | 📊[gumbel_left.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/gumbel_left.xlsx) | 🌐[gs:gumbel_left](https://docs.google.com/spreadsheets/d/1WoW97haebsHk1sB8smC4Zq8KqW8leJY0bPK757B2IdI) |
| gumbel_right | ▶️[phitter:gumbel_right](https://phitter.io/distributions/continuous/gumbel_right) | 📊[gumbel_right.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/gumbel_right.xlsx) | 🌐[gs:gumbel_right](https://docs.google.com/spreadsheets/d/1CpzfSwAdptFrI8DhV3tWRsEFd9cr6h3Jaj7t3gigims) |
| half_normal | ▶️[phitter:half_normal](https://phitter.io/distributions/continuous/half_normal) | 📊[half_normal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/half_normal.xlsx) | 🌐[gs:half_normal](https://docs.google.com/spreadsheets/d/1HQpNSNIhZPzMQvWWKyShnYNH74d1Bhs_d6k9La52V9M) |
| hyperbolic_secant | ▶️[phitter:hyperbolic_secant](https://phitter.io/distributions/continuous/hyperbolic_secant) | 📊[hyperbolic_secant.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/hyperbolic_secant.xlsx) | 🌐[gs:hyperbolic_secant](https://docs.google.com/spreadsheets/d/1lTcLlwX0fmgUjhT4ljvKL_dqSReK_lEthsZNBtDxAF8) |
| inverse_gamma | ▶️[phitter:inverse_gamma](https://phitter.io/distributions/continuous/inverse_gamma) | 📊[inverse_gamma.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/inverse_gamma.xlsx) | 🌐[gs:inverse_gamma](https://docs.google.com/spreadsheets/d/1uOgfUvhBHKAXhbYATUwdHRQnBMIMnu6rWecqKx6MoIA) |
| inverse_gamma_3p | ▶️[phitter:inverse_gamma_3p](https://phitter.io/distributions/continuous/inverse_gamma_3p) | 📊[inverse_gamma_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/inverse_gamma_3p.xlsx) | 🌐[gs:inverse_gamma_3p](https://docs.google.com/spreadsheets/d/16LCC6j_j1Cm7stc7LEd-C0ObUcZ-agL51ALGYxoZtrI) |
| inverse_gaussian | ▶️[phitter:inverse_gaussian](https://phitter.io/distributions/continuous/inverse_gaussian) | 📊[inverse_gaussian.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/inverse_gaussian.xlsx) | 🌐[gs:inverse_gaussian](https://docs.google.com/spreadsheets/d/10LaEnmnRxNESViLTlw6FDyt1YSWNbMlBXaWc9t4q5qA) |
| inverse_gaussian_3p | ▶️[phitter:inverse_gaussian_3p](https://phitter.io/distributions/continuous/inverse_gaussian_3p) | 📊[inverse_gaussian_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/inverse_gaussian_3p.xlsx) | 🌐[gs:inverse_gaussian_3p](https://docs.google.com/spreadsheets/d/1wkcSlXnUdMe4by2N9nPA_Cdsz3D0kHL7MVchsjl_CTQ) |
| johnson_sb | ▶️[phitter:johnson_sb](https://phitter.io/distributions/continuous/johnson_sb) | 📊[johnson_sb.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/johnson_sb.xlsx) | 🌐[gs:johnson_sb](https://docs.google.com/spreadsheets/d/1H3bpJd729k0VK3LtvgxvKJiduIdP04UkHhgJoq4ayHQ) |
| johnson_su | ▶️[phitter:johnson_su](https://phitter.io/distributions/continuous/johnson_su) | 📊[johnson_su.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/johnson_su.xlsx) | 🌐[gs:johnson_su](https://docs.google.com/spreadsheets/d/15kw_NZr3RFjN9orvF844ITWXroWRsCFkY7Uvq0NZ4K8) |
| kumaraswamy | ▶️[phitter:kumaraswamy](https://phitter.io/distributions/continuous/kumaraswamy) | 📊[kumaraswamy.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/kumaraswamy.xlsx) | 🌐[gs:kumaraswamy](https://docs.google.com/spreadsheets/d/10YJUDlAEygfOn07YxHBJxDqiXxygv8jKpJ8WvCZhe84) |
| laplace | ▶️[phitter:laplace](https://phitter.io/distributions/continuous/laplace) | 📊[laplace.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/laplace.xlsx) | 🌐[gs:laplace](https://docs.google.com/spreadsheets/d/110gPFTHOnQqecbXrjq3Wqv52I5Cw93UjL7eoSVC1DIs) |
| levy | ▶️[phitter:levy](https://phitter.io/distributions/continuous/levy) | 📊[levy.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/levy.xlsx) | 🌐[gs:levy](https://docs.google.com/spreadsheets/d/1OIA4C6iqhwK0Y17wb_O5ce9YXy4JIBf1yq3TqcmDp3U) |
| loggamma | ▶️[phitter:loggamma](https://phitter.io/distributions/continuous/loggamma) | 📊[loggamma.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/loggamma.xlsx) | 🌐[gs:loggamma](https://docs.google.com/spreadsheets/d/1SXCmxXs7hkajo_W_qL-e0MJQEaUJqTpUno1nYGXxmxI) |
| logistic | ▶️[phitter:logistic](https://phitter.io/distributions/continuous/logistic) | 📊[logistic.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/logistic.xlsx) | 🌐[gs:logistic](https://docs.google.com/spreadsheets/d/1WokfLcAM2f2TE9xcZwwuy3qjl4itw-y0cwAb7fyKxb0) |
| loglogistic | ▶️[phitter:loglogistic](https://phitter.io/distributions/continuous/loglogistic) | 📊[loglogistic.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/loglogistic.xlsx) | 🌐[gs:loglogistic](https://docs.google.com/spreadsheets/d/1WWXRuI6AP9n_n47ikOHWUjkfCYUOQgzhDjRsKBKEHXA) |
| loglogistic_3p | ▶️[phitter:loglogistic_3p](https://phitter.io/distributions/continuous/loglogistic_3p) | 📊[loglogistic_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/loglogistic_3p.xlsx) | 🌐[gs:loglogistic_3p](https://docs.google.com/spreadsheets/d/1RaLZ5L0rTrv9_fAi6izElf02ucuFy9LwagL_gQn3R0Y) |
| lognormal | ▶️[phitter:lognormal](https://phitter.io/distributions/continuous/lognormal) | 📊[lognormal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/lognormal.xlsx) | 🌐[gs:lognormal](https://docs.google.com/spreadsheets/d/1lS1cR4C2R45ug0ZyLxBlRBtcXH6hNPE1L-5wP68gUpA) |
| maxwell | ▶️[phitter:maxwell](https://phitter.io/distributions/continuous/maxwell) | 📊[maxwell.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/maxwell.xlsx) | 🌐[gs:maxwell](https://docs.google.com/spreadsheets/d/15tPw2RM2_a0vJMjVwNgsJnJUKFk9xbcEALqOf1m5qH0) |
| moyal | ▶️[phitter:moyal](https://phitter.io/distributions/continuous/moyal) | 📊[moyal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/moyal.xlsx) | 🌐[gs:moyal](https://docs.google.com/spreadsheets/d/1_58zWuk_-wSEesJbCc2FTHxv4HO5WouGwlStIZitt1I) |
| nakagami | ▶️[phitter:nakagami](https://phitter.io/distributions/continuous/nakagami) | 📊[nakagami.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/nakagami.xlsx) | 🌐[gs:nakagami](https://docs.google.com/spreadsheets/d/1fY8ID5gz1R6oWFm4w91GFdQMCd0wJ5ZRgfWi-yQtGqs) |
| non_central_chi_square | ▶️[phitter:non_central_chi_square](https://phitter.io/distributions/continuous/non_central_chi_square) | 📊[non_central_chi_square.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/non_central_chi_square.xlsx) | 🌐[gs:non_central_chi_square](https://docs.google.com/spreadsheets/d/17KWXPKOuMfTG0w4Gqe3lU3vWY2e9k31AX22PXTzOrFk) |
| non_central_f | ▶️[phitter:non_central_f](https://phitter.io/distributions/continuous/non_central_f) | 📊[non_central_f.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/non_central_f.xlsx) | 🌐[gs:non_central_f](https://docs.google.com/spreadsheets/d/14mZ563hIw2vXNM89DUncpsOdGgBXEUIIxJNa3-MVNIM) |
| non_central_t_student | ▶️[phitter:non_central_t_student](https://phitter.io/distributions/continuous/non_central_t_student) | 📊[non_central_t_student.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/non_central_t_student.xlsx) | 🌐[gs:non_central_t_student](https://docs.google.com/spreadsheets/d/1u8pseBDM3brw0AXlru1cprOsfQuHMWfvfDbz2XxKoOY) |
| normal | ▶️[phitter:normal](https://phitter.io/distributions/continuous/normal) | 📊[normal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/normal.xlsx) | 🌐[gs:normal](https://docs.google.com/spreadsheets/d/18QTB3YYprvdFhr6PJI-DFcZOnYAuffdH8JHOtH1f83I) |
| pareto_first_kind | ▶️[phitter:pareto_first_kind](https://phitter.io/distributions/continuous/pareto_first_kind) | 📊[pareto_first_kind.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/pareto_first_kind.xlsx) | 🌐[gs:pareto_first_kind](https://docs.google.com/spreadsheets/d/1T-Sjp0yCxbJpP9njbovOiFpbP8PrwI5jlj66odxAw5E) |
| pareto_second_kind | ▶️[phitter:pareto_second_kind](https://phitter.io/distributions/continuous/pareto_second_kind) | 📊[pareto_second_kind.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/pareto_second_kind.xlsx) | 🌐[gs:pareto_second_kind](https://docs.google.com/spreadsheets/d/1hnBOqkbcRNuyRxaLP8eHei5MRwUFDb1bgdcZYkpYKio) |
| pert | ▶️[phitter:pert](https://phitter.io/distributions/continuous/pert) | 📊[pert.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/pert.xlsx) | 🌐[gs:pert](https://docs.google.com/spreadsheets/d/1NeKJKq4D_BB-ouefgJ35FzcORA7fH1OQwC5dCZKI_38) |
| power_function | ▶️[phitter:power_function](https://phitter.io/distributions/continuous/power_function) | 📊[power_function.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/power_function.xlsx) | 🌐[gs:power_function](https://docs.google.com/spreadsheets/d/1Hbi-XZiCK--JGFnoY-8iDLmNgYclDo5L4LKYKCCxfzw) |
| rayleigh | ▶️[phitter:rayleigh](https://phitter.io/distributions/continuous/rayleigh) | 📊[rayleigh.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/rayleigh.xlsx) | 🌐[gs:rayleigh](https://docs.google.com/spreadsheets/d/1UWtjOwokob4x43OcMLLFbNTYUqOo5dJWqSTfWbS-yyw) |
| reciprocal | ▶️[phitter:reciprocal](https://phitter.io/distributions/continuous/reciprocal) | 📊[reciprocal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/reciprocal.xlsx) | 🌐[gs:reciprocal](https://docs.google.com/spreadsheets/d/1ghFeCj8Q_hbpWqv9xXaNl1UKUe-5kOomZPWyI1JsoGA) |
| rice | ▶️[phitter:rice](https://phitter.io/distributions/continuous/rice) | 📊[rice.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/rice.xlsx) | 🌐[gs:rice](https://docs.google.com/spreadsheets/d/1hGVFWbF0w7D0l54t_p0vUId0rO2s61BRdrgslDYTnWc) |
| semicircular | ▶️[phitter:semicircular](https://phitter.io/distributions/continuous/semicircular) | 📊[semicircular.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/semicircular.xlsx) | 🌐[gs:semicircular](https://docs.google.com/spreadsheets/d/195c9VbAKtvEndJKnFp52TrENYK2iytMzIXLMKFAGgx4) |
| t_student | ▶️[phitter:t_student](https://phitter.io/distributions/continuous/t_student) | 📊[t_student.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/t_student.xlsx) | 🌐[gs:t_student](https://docs.google.com/spreadsheets/d/1fGxJfFL5eXAWk8xNI6HgCX9SQuXi-m5mR83N1dMLJrg) |
| t_student_3p | ▶️[phitter:t_student_3p](https://phitter.io/distributions/continuous/t_student_3p) | 📊[t_student_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/t_student_3p.xlsx) | 🌐[gs:t_student_3p](https://docs.google.com/spreadsheets/d/1K8bpbc-0mwe0mvRYXUQmoE8vaTigciJWDS4CPXmJodU) |
| trapezoidal | ▶️[phitter:trapezoidal](https://phitter.io/distributions/continuous/trapezoidal) | 📊[trapezoidal.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/trapezoidal.xlsx) | 🌐[gs:trapezoidal](https://docs.google.com/spreadsheets/d/1Gsk5M_R2q9Or8RTggKtTkqEk-cN6IuDgYqbmhFm5Xlw) |
| triangular | ▶️[phitter:triangular](https://phitter.io/distributions/continuous/triangular) | 📊[triangular.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/triangular.xlsx) | 🌐[gs:triangular](https://docs.google.com/spreadsheets/d/1nirKOt7O7rUf2nlYu61cnNYT91GKSzb6pVlc1-pzzGw) |
| uniform | ▶️[phitter:uniform](https://phitter.io/distributions/continuous/uniform) | 📊[uniform.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/uniform.xlsx) | 🌐[gs:uniform](https://docs.google.com/spreadsheets/d/1TSaKNHOsVLYUobyKTpHR6qCuCAgfkKmRSETvdeZLcw4) |
| weibull | ▶️[phitter:weibull](https://phitter.io/distributions/continuous/weibull) | 📊[weibull.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/weibull.xlsx) | 🌐[gs:weibull](https://docs.google.com/spreadsheets/d/1DdNwWHmu0PZAhMYf475EMU3scTMXok3wOhzsg7gn8Ek) |
| weibull_3p | ▶️[phitter:weibull_3p](https://phitter.io/distributions/continuous/weibull_3p) | 📊[weibull_3p.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/continuous/weibull_3p.xlsx) | 🌐[gs:weibull_3p](https://docs.google.com/spreadsheets/d/1agwpFGpXm62srDxgPOoDQGN8nGd8zaoztXg84Bgedlo) |
## Discrete Distributions
#### [1. PDF File Documentation Discrete Distributions](https://github.com/phitter-hub/phitter-kernel/blob/main/distributions_documentation/discrete/document_discrete_distributions/phitter_discrete_distributions.pdf)
#### 2. Resources Discrete Distributions
| Distribution | Phitter Playground | Excel File | Google Sheets Files |
| :---------------- | :------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------ |
| bernoulli | ▶️[phitter:bernoulli](https://phitter.io/distributions/continuous/bernoulli) | 📊[bernoulli.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/bernoulli.xlsx) | 🌐[gs:bernoulli](https://docs.google.com/spreadsheets/d/1sWJZYZWW8cVLFXYV-fb3Lq4y2YgWzgTGWHfhIJ0zM5c) |
| binomial | ▶️[phitter:binomial](https://phitter.io/distributions/continuous/binomial) | 📊[binomial.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/binomial.xlsx) | 🌐[gs:binomial](https://docs.google.com/spreadsheets/d/1bPOiZVUhjLMmbFqVjWMqg1NzTvsZxVIw95fi5hIhkn0) |
| geometric | ▶️[phitter:geometric](https://phitter.io/distributions/continuous/geometric) | 📊[geometric.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/geometric.xlsx) | 🌐[gs:geometric](https://docs.google.com/spreadsheets/d/1cEU6n8UxpJ_Had6WfFnAXZ2FcaLGYu8g5srQ_iEfjgg) |
| hypergeometric | ▶️[phitter:hypergeometric](https://phitter.io/distributions/continuous/hypergeometric) | 📊[hypergeometric.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/hypergeometric.xlsx) | 🌐[gs:hypergeometric](https://docs.google.com/spreadsheets/d/10xUqKVoFzUiukuYt6VFwlaetMDTdGulHQPEWl1rJiMA) |
| logarithmic | ▶️[phitter:logarithmic](https://phitter.io/distributions/continuous/logarithmic) | 📊[logarithmic.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/logarithmic.xlsx) | 🌐[gs:logarithmic](https://docs.google.com/spreadsheets/d/1N-YXrSfOYkPKwerL5I1QmfxuwbZzVUzgBWTcKzcmLhE) |
| negative_binomial | ▶️[phitter:negative_binomial](https://phitter.io/distributions/continuous/negative_binomial) | 📊[negative_binomial.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/negative_binomial.xlsx) | 🌐[gs:negative_binomial](https://docs.google.com/spreadsheets/d/1xmCWBiswdW5s7SIhwT2nrdQxLFAb6hw73iy52_nvjQE) |
| poisson | ▶️[phitter:poisson](https://phitter.io/distributions/continuous/poisson) | 📊[poisson.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/poisson.xlsx) | 🌐[gs:poisson](https://docs.google.com/spreadsheets/d/1fwoe70JH5Ve6sETb7AwBdb4eep_h2DeGlpHIWcHeZA8) |
| uniform | ▶️[phitter:uniform](https://phitter.io/distributions/continuous/uniform) | 📊[uniform.xlsx](https://github.com/phitter-hub/phitter-files/blob/main/discrete/uniform.xlsx) | 🌐[gs:uniform](https://docs.google.com/spreadsheets/d/1Ahl2ugOKkUCVWzzc_aNHwlA5Af4sHpTwqSiFIyYPsfM) |
## Benchmarks
### _Fit time continuous distributions_
| Sample Size / Workers | 1 | 2 | 6 | 10 | 20 |
| :-------------------: | :-------: | :------: | :------: | :------: | :------: |
| **1K** | 8.2981 | 7.1242 | 8.9667 | 9.9287 | 16.2246 |
| **10K** | 20.8711 | 14.2647 | 10.5612 | 11.6004 | 17.8562 |
| **100K** | 152.6296 | 97.2359 | 57.7310 | 51.6182 | 53.2313 |
| **500K** | 914.9291 | 640.8153 | 370.0323 | 267.4597 | 257.7534 |
| **1M** | 1580.8501 | 972.3985 | 573.5429 | 496.5569 | 425.7809 |
### _Estimation time parameters discrete distributions_
| Sample Size / Workers | 1 | 2 | 4 |
| :-------------------: | :-----: | :-----: | :-----: |
| **1K** | 0.1688 | 2.6402 | 2.8719 |
| **10K** | 0.4462 | 2.4452 | 3.0471 |
| **100K** | 4.5598 | 6.3246 | 7.5869 |
| **500K** | 19.0172 | 21.8047 | 19.8420 |
| **1M** | 39.8065 | 29.8360 | 30.2334 |
### _Estimation time parameters continuous distributions_
| Distribution / Sample Size | 1K | 10K | 100K | 500K | 1M | 10M |
| :------------------------: | :----: | :----: | :-----: | :-----: | :------: | :-------: |
| alpha | 0.3345 | 0.4625 | 2.5933 | 18.3856 | 39.6533 | 362.2951 |
| arcsine | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| argus | 0.0559 | 0.2050 | 2.2472 | 13.3928 | 41.5198 | 362.2472 |
| beta | 0.1880 | 0.1790 | 0.1940 | 0.2110 | 0.1800 | 0.3134 |
| beta_prime | 0.1766 | 0.7506 | 7.6039 | 40.4264 | 85.0677 | 812.1323 |
| beta_prime_4p | 0.0720 | 0.3630 | 3.9478 | 20.2703 | 40.2709 | 413.5239 |
| bradford | 0.0110 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 |
| burr | 0.0733 | 0.6931 | 5.5425 | 36.7684 | 79.8269 | 668.2016 |
| burr_4p | 0.1552 | 0.7981 | 8.4716 | 44.4549 | 87.7292 | 858.0035 |
| cauchy | 0.0090 | 0.0160 | 0.1581 | 1.1052 | 2.1090 | 21.5244 |
| chi_square | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| chi_square_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| dagum | 0.3381 | 0.8278 | 9.6907 | 45.5855 | 98.6691 | 917.6713 |
| dagum_4p | 0.3646 | 1.3307 | 13.3437 | 70.9462 | 140.9371 | 1396.3368 |
| erlang | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| erlang_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| error_function | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| exponential | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| exponential_2p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| f | 0.0592 | 0.2948 | 2.6920 | 18.9458 | 29.9547 | 402.2248 |
| fatigue_life | 0.0352 | 0.1101 | 1.7085 | 9.0090 | 20.4702 | 186.9631 |
| folded_normal | 0.0020 | 0.0020 | 0.0020 | 0.0022 | 0.0033 | 0.0040 |
| frechet | 0.1313 | 0.4359 | 5.7031 | 39.4202 | 43.2469 | 671.3343 |
| f_4p | 0.3269 | 0.7517 | 0.6183 | 0.6037 | 0.5809 | 0.2073 |
| gamma | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| gamma_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| generalized_extreme_value | 0.0833 | 0.2054 | 2.0337 | 10.3301 | 22.1340 | 243.3120 |
| generalized_gamma | 0.0298 | 0.0178 | 0.0227 | 0.0236 | 0.0170 | 0.0241 |
| generalized_gamma_4p | 0.0371 | 0.0116 | 0.0732 | 0.0725 | 0.0707 | 0.0730 |
| generalized_logistic | 0.1040 | 0.1073 | 0.1037 | 0.0819 | 0.0989 | 0.0836 |
| generalized_normal | 0.0154 | 0.0736 | 0.7367 | 2.4831 | 5.9752 | 55.2417 |
| generalized_pareto | 0.3189 | 0.8978 | 8.9370 | 51.3813 | 101.6832 | 1015.2933 |
| gibrat | 0.0328 | 0.0432 | 0.4287 | 2.7159 | 5.5721 | 54.1702 |
| gumbel_left | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0010 |
| gumbel_right | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| half_normal | 0.0010 | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0000 |
| hyperbolic_secant | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| inverse_gamma | 0.0308 | 0.0632 | 0.7233 | 5.0127 | 10.7885 | 99.1316 |
| inverse_gamma_3p | 0.0787 | 0.1472 | 1.6513 | 11.1161 | 23.4587 | 227.6125 |
| inverse_gaussian | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| inverse_gaussian_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| johnson_sb | 0.2966 | 0.7466 | 4.0707 | 40.2028 | 56.2130 | 728.2447 |
| johnson_su | 0.0070 | 0.0010 | 0.0010 | 0.0143 | 0.0010 | 0.0010 |
| kumaraswamy | 0.0164 | 0.0120 | 0.0130 | 0.0123 | 0.0125 | 0.0150 |
| laplace | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| levy | 0.0100 | 0.0314 | 0.2296 | 1.1365 | 2.7211 | 26.4966 |
| loggamma | 0.0085 | 0.0050 | 0.0050 | 0.0070 | 0.0062 | 0.0080 |
| logistic | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| loglogistic | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| loglogistic_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| lognormal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0000 |
| maxwell | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 |
| moyal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| nakagami | 0.0000 | 0.0030 | 0.0213 | 0.1215 | 0.2649 | 2.2457 |
| non_central_chi_square | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| non_central_f | 0.0190 | 0.0182 | 0.0210 | 0.0192 | 0.0190 | 0.0200 |
| non_central_t_student | 0.0874 | 0.0822 | 0.0862 | 0.1314 | 0.2516 | 0.1781 |
| normal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| pareto_first_kind | 0.0010 | 0.0030 | 0.0390 | 0.2494 | 0.5226 | 5.5246 |
| pareto_second_kind | 0.0643 | 0.1522 | 1.1722 | 10.9871 | 23.6534 | 201.1626 |
| pert | 0.0052 | 0.0030 | 0.0030 | 0.0040 | 0.0040 | 0.0092 |
| power_function | 0.0075 | 0.0040 | 0.0040 | 0.0030 | 0.0040 | 0.0040 |
| rayleigh | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| reciprocal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| rice | 0.0182 | 0.0030 | 0.0040 | 0.0060 | 0.0030 | 0.0050 |
| semicircular | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| trapezoidal | 0.0083 | 0.0072 | 0.0073 | 0.0060 | 0.0070 | 0.0060 |
| triangular | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| t_student | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| t_student_3p | 0.3892 | 1.1860 | 11.2759 | 71.1156 | 143.1939 | 1409.8578 |
| uniform | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| weibull | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0010 |
| weibull_3p | 0.0061 | 0.0040 | 0.0030 | 0.0040 | 0.0050 | 0.0050 |
### _Estimation time parameters discrete distributions_
| Distribution / Sample Size | 1K | 10K | 100K | 500K | 1M | 10M |
| :------------------------: | :----: | :----: | :----: | :----: | :----: | :----: |
| bernoulli | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| binomial | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| geometric | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| hypergeometric | 0.0773 | 0.0061 | 0.0030 | 0.0020 | 0.0030 | 0.0051 |
| logarithmic | 0.0210 | 0.0035 | 0.0171 | 0.0050 | 0.0030 | 0.0756 |
| negative_binomial | 0.0293 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| poisson | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| uniform | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Documentation Simulation Module
## Process Simulation This will help you to understand your processes. To use it, run the following line ```python from phitter import simulation # Create a simulation process instance simulation = simulation.ProcessSimulation() ``` ### Add processes to your simulation instance There are two ways to add processes to your simulation instance: - Adding a **process _without_ preceding process (new branch)** - Adding a **process _with_ preceding process (with previous ids)** #### Process _without_ preceding process (new branch) ```python # Add a new process without preceding process simulation.add_process( prob_distribution="normal", parameters={"mu": 5, "sigma": 2}, process_id="first_process", number_of_products=10, number_of_servers=3, new_branch=True, ) ``` #### Process _with_ preceding process (with previous ids) ```python # Add a new process with preceding process simulation.add_process( prob_distribution="exponential", parameters={"lambda": 4}, process_id="second_process", previous_ids=["first_process"], ) ``` #### All together and adding some new process The order in which you add each process **_matters_**. You can add as many processes as you need. ```python # Add a new process without preceding process simulation.add_process( prob_distribution="normal", parameters={"mu": 5, "sigma": 2}, process_id="first_process", number_of_products=10, number_of_servers=3, new_branch=True, ) # Add a new process with preceding process simulation.add_process( prob_distribution="exponential", parameters={"lambda": 4}, process_id="second_process", previous_ids=["first_process"], ) # Add a new process with preceding process simulation.add_process( prob_distribution="gamma", parameters={"alpha": 15, "beta": 3}, process_id="third_process", previous_ids=["first_process"], ) # Add a new process without preceding process simulation.add_process( prob_distribution="exponential", parameters={"lambda": 4.3}, process_id="fourth_process", new_branch=True, ) # Add a new process with preceding process simulation.add_process( prob_distribution="beta", parameters={"alpha": 1, "beta": 1, "A": 2, "B": 3}, process_id="fifth_process", previous_ids=["second_process", "fourth_process"], ) # Add a new process with preceding process simulation.add_process( prob_distribution="normal", parameters={"mu": 15, "sigma": 2}, process_id="sixth_process", previous_ids=["third_process", "fifth_process"], ) ``` ### Visualize your processes You can visualize your processes to see if what you're trying to simulate is your actual process. ```python # Graph your process simulation.process_graph() ```  ### Start Simulation You can simulate and have different simulation time values or you can create a confidence interval for your process #### Run Simulation Simulate several scenarios of your complete process ```python # Run Simulation simulation.run(number_of_simulations=100) # After run simulation: pandas.Dataframe ``` ### Review Simulation Metrics by Stage If you want to review average time and standard deviation by stage run this line of code ```python # Review simulation metrics simulation.simulation_metrics() -> pandas.Dataframe ``` #### Run confidence interval If you want to have a confidence interval for the simulation metrics, run the following line of code ```python # Confidence interval for Simulation metrics simulation.run_confidence_interval( confidence_level=0.99, number_of_simulations=100, replications=10, ) -> pandas.Dataframe ``` ## Queue Simulation If you need to simulate queues run the following code: ```python from phitter import simulation # Create a simulation process instance simulation = simulation.QueueingSimulation( a="exponential", a_parameters={"lambda": 5}, s="exponential", s_parameters={"lambda": 20}, c=3, ) ``` In this case we are going to simulate **a** (arrivals) with _exponential distribution_ and **s** (service) as _exponential distribution_ with **c** equals to 3 different servers. By default Maximum Capacity **k** is _infinity_, total population **n** is _infinity_ and the queue discipline **d** is _FIFO_. As we are not selecting **d** equals to "PBS" we don't have any information to add for **pbs_distribution** nor **pbs_parameters** ### Run the simulation If you want to have the simulation results ```python # Run simulation simulation.run(simulation_time = 2000) ``` If you want to see some metrics and probabilities from this simulation you should use:: ```python # Calculate metrics simulation.metrics_summary() -> pandas.Dataframe # Calculate probabilities simulation.number_probability_summary() -> pandas.Dataframe ``` ### Run Confidence Interval for metrics and probabilities If you want to have a confidence interval for your metrics and probabilities you should run the following line ```python # Calculate confidence interval for metrics and probabilities probabilities, metrics = simulation.confidence_interval_metrics( simulation_time=2000, confidence_level=0.99, replications=10, ) probabilities -> pandas.Dataframe metrics -> pandas.Dataframe ```Sponsor Phitter
Contribution
All contributions and collaborations are welcome!
For bugs, feature requests, and clear suggestions for improvement please open an issue.
If you have built something upon Phitter-Kernel that would be useful to others, or can address an open issue, please fork the repository and open a pull request.
Owner
- Name: Phitter
- Login: phitter-hub
- Kind: user
- Website: https://phitter.io
- Repositories: 1
- Profile: https://github.com/phitter-hub
Phitter helps you find the best theoretical probability distribution online for free. Also is a python package
GitHub Events
Total
- Push event: 1
Last Year
- Push event: 1
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- plotly >=5.14.0
- scipy >=1.1.0