NiaARM

NiaARM: A minimalistic framework for Numerical Association Rule Mining - Published in JOSS (2022)

https://github.com/firefly-cpp/niaarm

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 11 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: arxiv.org, acm.org, joss.theoj.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

association-rule-mining association-rules data-mining data-science evolutionary-algorithms swarm-intelligence

Keywords from Contributors

optimization-algorithms metaheuristic microframework nature-inspired-algorithms neuroimaging mesh differential-equations uncertainty-quantification pypi annotation

Scientific Fields

Mathematics Computer Science - 38% confidence
Last synced: 4 months ago · JSON representation ·

Repository

A minimalistic framework for Numerical Association Rule Mining

Basic Info
  • Host: GitHub
  • Owner: firefly-cpp
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 44.1 MB
Statistics
  • Stars: 19
  • Watchers: 5
  • Forks: 9
  • Open Issues: 2
  • Releases: 31
Topics
association-rule-mining association-rules data-mining data-science evolutionary-algorithms swarm-intelligence
Created about 4 years ago · Last pushed 5 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Authors

README.md

logo

NiaARM

A minimalistic framework for Numerical Association Rule Mining

PyPI Version PyPI - Python Version PyPI - Downloads Fedora package AUR package Packaging status Downloads GitHub license NiaARM Documentation status

GitHub commit activity Percentage of issues still open Average time to resolve an issue All Contributors

DOI

🔍 Detailed insights📦 Installation🚀 Usage📄 Cite us📚 References📖 See also🔑 License🫂 Contributors

NiaARM is a framework for Association Rule Mining based on nature-inspired algorithms for optimization. 🌿 The framework is written fully in Python and runs on all platforms. NiaARM allows users to preprocess the data in a transaction database automatically, to search for association rules and provide a pretty output of the rules found. 📊 This framework also supports integral and real-valued types of attributes besides the categorical ones. Mining the association rules is defined as an optimization problem, and solved using the nature-inspired algorithms that come from the related framework called NiaPy. 🔗

  • Documentation: https://niaarm.readthedocs.io/en/latest
  • Tested OS: Windows, Ubuntu, Fedora, Alpine, Arch, macOS. However, that does not mean it does not work on others

🔍 Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format 📁
  • preprocessing of data 🧹
  • searching for association rules 🔎
  • providing output of mined association rules 📋
  • generating statistics about mined association rules 📊
  • visualization of association rules 📈
  • association rule text mining (experimental) 📄

📦 Installation

pip

To install NiaARM with pip, use:

sh pip install niaarm

To install NiaARM on Alpine Linux, enable Community repository and use:

sh $ apk add py3-niaarm

To install NiaARM on Arch Linux, use an AUR helper:

sh $ yay -Syyu python-niaarm

To install NiaARM on Fedora, use:

sh $ dnf install python3-niaarm

To install NiaARM on NixOS, use:

sh nix-env -iA nixos.python311Packages.niaarm

🚀 Usage

Loading data

In NiaARM, data loading is done via the Dataset class. There are two options for loading data:

Option 1: From a pandas DataFrame (recommended)

```python import pandas as pd from niaarm import Dataset

df = pd.read_csv('datasets/Abalone.csv')

preprocess data...

data = Dataset(df) print(data) # printing the dataset will generate a feature report ```

Option 2: Directly from a CSV file

```python from niaarm import Dataset

data = Dataset('datasets/Abalone.csv') print(data) ```

Preprocessing

Data Squashing

Optionally, a preprocessing technique, called data squashing [5], can be applied. This will significantly reduce the number of transactions, while providing similar results to the original dataset.

```python from niaarm import Dataset, squash

dataset = Dataset('datasets/Abalone.csv') squashed = squash(dataset, threshold=0.9, similarity='euclidean') print(squashed) ```

Mining association rules

The easy way (recommended)

Association rule mining can be easily performed using the get_rules function:

```python from niaarm import Dataset, get_rules from niapy.algorithms.basic import DifferentialEvolution

data = Dataset("datasets/Abalone.csv")

algo = DifferentialEvolution(populationsize=50, differentialweight=0.5, crossover_probability=0.9) metrics = ('support', 'confidence')

rules, runtime = getrules(data, algo, metrics, max_iters=30, logging=True)

print(rules) # Prints basic stats about the mined rules print(f'Run Time: {runtime}') rules.tocsv('output.csv') ```

The hard way

The above example can be also be implemented using a more low level interface, with the NiaARM class directly:

```python from niaarm import NiaARM, Dataset from niapy.algorithms.basic import DifferentialEvolution from niapy.task import Task, OptimizationType

data = Dataset("datasets/Abalone.csv")

Create a problem

dimension represents the dimension of the problem;

features represent the list of features, while transactions depicts the list of transactions

metrics is a sequence of metrics to be taken into account when computing the fitness;

you can also pass in a dict of the shape {'metric_name': };

when passing a sequence, the weights default to 1.

problem = NiaARM(data.dimension, data.features, data.transactions, metrics=('support', 'confidence'), logging=True)

build niapy task

task = Task(problem=problem, maxiters=30, optimizationtype=OptimizationType.MAXIMIZATION)

use Differential Evolution (DE) algorithm from the NiaPy library

see full list of available algorithms: https://github.com/NiaOrg/NiaPy/blob/master/Algorithms.md

algo = DifferentialEvolution(populationsize=50, differentialweight=0.5, crossover_probability=0.9)

run algorithm

best = algo.run(task=task)

sort rules

problem.rules.sort()

export all rules to csv

problem.rules.to_csv('output.csv') ```

Interest measures

The framework implements several popular interest measures, which can be used to compute the fitness function value of rules and for assessing the quality of the mined rules. A full list of the implemented interest measures along with their descriptions and equations can be found here.

Visualization

The framework currently supports (visualizations):

  • hill slopes (presented in [4]),
  • scatter plot and
  • grouped matrix plot visualization methods.

More visualization methods are planned to be implemented in future releases.

Hill Slopes

```python from matplotlib import pyplot as plt from niaarm import Dataset, getrules from niaarm.visualize import hillslopes

dataset = Dataset('datasets/Abalone.csv') metrics = ('support', 'confidence') rules, _ = getrules(dataset, 'DifferentialEvolution', metrics, maxevals=1000, seed=1234) somerule = rules[150] hillslopes(some_rule, dataset.transactions) plt.show() ```

logo

Scatter Plot

```python from examples.visualizationexamples.preparedatasets import getweatherdata from niaarm import Dataset, getrules from niaarm.visualize import scatterplot

Get prepared data

armdf = getweather_data()

Prepare Dataset

dataset = Dataset(pathordf=arm_df,delimiter=",")

Get rules

metrics = ("support", "confidence") rules, runtime = getrules(dataset, "DifferentialEvolution", metrics, max_evals=500)

Add lift to metrics

metrics = list(metrics) metrics.append("lift") metrics = tuple(metrics)

Visualize scatter plot

fig = scatter_plot(rules=rules, metrics=metrics, interactive=False) fig.show() ```

logo

Grouped Matrix Plot

```python from examples.visualizationexamples.preparedatasets import getfootballplayerdata from niaarm import Dataset, getrules from niaarm.visualize import groupedmatrixplot

Get prepared data

armdf = getfootballplayerdata()

Prepare Dataset

dataset = Dataset(pathordf=arm_df, delimiter=",")

Get rules

metrics = ("support", "confidence") rules, runtime = getrules(dataset, "DifferentialEvolution", metrics, max_evals=500)

Add lift to metrics

metrics = list(metrics) metrics.append("lift") metrics = tuple(metrics)

Visualize grouped matrix plot

fig = groupedmatrixplot(rules=rules, metrics=metrics, k=5, interactive=False) fig.show() ```

logo

Text Mining (Experimental)

An experimental implementation of association rule text mining using nature-inspired algorithms, based on ideas from [5] is also provided. The niaarm.text module contains the Corpus and Document classes for loading and preprocessing corpora, a TextRule class, representing a text rule, and the NiaARTM class, implementing association rule text mining as a continuous optimization problem. The get_text_rules function, equivalent to get_rules, but for text mining, was also added to the niaarm.mine module.

```python import pandas as pd from niaarm.text import Corpus from niaarm.mine import gettextrules from niapy.algorithms.basic import ParticleSwarmOptimization

df = pd.readjson('datasets/text/artmtestdataset.json', orient='records') documents = df['text'].tolist() corpus = Corpus.fromlist(documents)

algorithm = ParticleSwarmOptimization(populationsize=200, seed=123) metrics = ('support', 'confidence', 'aws') rules, time = gettextrules(corpus, maxterms=5, algorithm=algorithm, metrics=metrics, max_evals=10000, logging=True)

print(rules) print(f'Run time: {time:.2f}s') rules.to_csv('output.csv') ```

Note: You may need to download stopwords and the punkt tokenizer from nltk by running import nltk; nltk.download('stopwords'); nltk.download('punkt').

For a full list of examples see the examples folder in the GitHub repository.

Command line interface

We provide a simple command line interface, which allows you to easily mine association rules on any input dataset, output them to a csv file and/or perform a simple statistical analysis on them. For more details see the documentation.

shell niaarm -h

``` usage: niaarm [-h] [-v] [-c CONFIG] [-i INPUT_FILE] [-o OUTPUT_FILE] [--squashing-similarity {euclidean,cosine}] [--squashing-threshold SQUASHING_THRESHOLD] [-a ALGORITHM] [-s SEED] [--max-evals MAX_EVALS] [--max-iters MAX_ITERS] [--metrics METRICS [METRICS ...]] [--weights WEIGHTS [WEIGHTS ...]] [--log] [--stats]

Perform ARM, output mined rules as csv, get mined rules' statistics

options: -h, --help show this help message and exit -v, --version show program's version number and exit -c CONFIG, --config CONFIG Path to a TOML config file -i INPUTFILE, --input-file INPUTFILE Input file containing a csv dataset -o OUTPUTFILE, --output-file OUTPUTFILE Output file for mined rules --squashing-similarity {euclidean,cosine} Similarity measure to use for squashing --squashing-threshold SQUASHINGTHRESHOLD Threshold to use for squashing -a ALGORITHM, --algorithm ALGORITHM Algorithm to use (niapy class name, e.g. DifferentialEvolution) -s SEED, --seed SEED Seed for the algorithm's random number generator --max-evals MAXEVALS Maximum number of fitness function evaluations --max-iters MAX_ITERS Maximum number of iterations --metrics METRICS [METRICS ...] Metrics to use in the fitness function. --weights WEIGHTS [WEIGHTS ...] Weights in range [0, 1] corresponding to --metrics --log Enable logging of fitness improvements --stats Display stats about mined rules `` Note: The CLI script can also run as a python module (python -m niaarm ...`)

📄 Cite us

Stupan, Ž., & Fister Jr., I. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

📚 References

Ideas are based on the following research papers:

[1] I. Fister Jr., A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Fister, I. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10

[5] I. Fister, S. Deb, I. Fister, Population-based metaheuristics for Association Rule Text Mining, In: Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, NY, USA, mar. 2020, pp. 19–23. doi: 10.1145/3396474.3396493.

[6] I. Fister, I. Fister Jr., D. Novak and D. Verber, Data squashing as preprocessing in association rule mining, 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, Singapore, 2022, pp. 1720-1725, doi: 10.1109/SSCI51031.2022.10022240.

📖 See also

[1] NiaARM.jl: Numerical Association Rule Mining in Julia

[2] arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)

🔑 License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

🫂 Contributors

Thanks goes to these wonderful people (emoji key):

zStupan
zStupan

💻 🐛 📖 🖋 🤔 💡
Iztok Fister Jr.
Iztok Fister Jr.

💻 🐛 🧑‍🏫 🚧 🤔
Erkan Karabulut
Erkan Karabulut

💻 🐛
Tadej Lahovnik
Tadej Lahovnik

📖
Ben Beasley
Ben Beasley

📖
Dusan Fister
Dusan Fister

🎨

This project follows the all-contributors specification. Contributions of any kind welcome!

Owner

  • Name: Iztok Fister Jr.
  • Login: firefly-cpp
  • Kind: user
  • Location: Slovenia

JOSS Publication

NiaARM: A minimalistic framework for Numerical Association Rule Mining
Published
September 29, 2022
Volume 7, Issue 77, Page 4448
Authors
Žiga Stupan ORCID
University of Maribor, Faculty of Electrical Engineering and Computer Science
Iztok Fister ORCID
University of Maribor, Faculty of Electrical Engineering and Computer Science
Editor
Fabian Scheipl ORCID
Tags
association rule mining data mining evolutionary algorithms numerical association rule mining visualization

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Stupan"
  given-names: "Žiga"
  orcid: "https://orcid.org/0000-0001-9847-7306"
- family-names: "Fister Jr."
  given-names: "Iztok"
  orcid: "https://orcid.org/0000-0002-6418-1272"
title: "NiaARM: A minimalistic framework for Numerical Association Rule Mining"
version: 0.2.1
doi: 10.21105/joss.04448
date-released: 2022-09-29
url: "https://github.com/firefly-cpp/NiaARM"

GitHub Events

Total
  • Create event: 5
  • Issues event: 4
  • Release event: 5
  • Watch event: 3
  • Delete event: 3
  • Issue comment event: 7
  • Member event: 1
  • Push event: 18
  • Pull request event: 24
  • Fork event: 7
Last Year
  • Create event: 5
  • Issues event: 4
  • Release event: 5
  • Watch event: 3
  • Delete event: 3
  • Issue comment event: 7
  • Member event: 1
  • Push event: 18
  • Pull request event: 24
  • Fork event: 7

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 391
  • Total Committers: 14
  • Avg Commits per committer: 27.929
  • Development Distribution Score (DDS): 0.558
Past Year
  • Commits: 33
  • Committers: 6
  • Avg Commits per committer: 5.5
  • Development Distribution Score (DDS): 0.758
Top Committers
Name Email Commits
zStupan z****n@g****m 173
firefly-cpp i****k@i****u 139
dependabot[bot] 4****] 24
allcontributors[bot] 4****] 12
Miha Bukovnik m****k@p****i 9
Tadej Lahovnik t****k@s****i 8
Zan Vrabic z****c@s****i 7
rhododendrom b****2@p****m 6
HlisTilen 4****n 4
howsun.jow h****w@g****m 3
Miha Bukovnik z****k@g****m 2
erkankarabulut e****t@g****m 2
Arfon Smith a****n@g****m 1
Benjamin A. Beasley c****e@m****t 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 56
  • Total pull requests: 112
  • Average time to close issues: 3 months
  • Average time to close pull requests: 1 day
  • Total issue authors: 10
  • Total pull request authors: 12
  • Average comments per issue: 1.82
  • Average comments per pull request: 0.43
  • Merged pull requests: 104
  • Bot issues: 0
  • Bot pull requests: 37
Past Year
  • Issues: 4
  • Pull requests: 26
  • Average time to close issues: 5 months
  • Average time to close pull requests: 3 days
  • Issue authors: 2
  • Pull request authors: 5
  • Average comments per issue: 1.25
  • Average comments per pull request: 0.35
  • Merged pull requests: 22
  • Bot issues: 0
  • Bot pull requests: 7
Top Authors
Issue Authors
  • firefly-cpp (42)
  • zStupan (3)
  • erkankarabulut (2)
  • howsunjow (2)
  • RamaSubramanianT (1)
  • minakshikaushik (1)
  • mlaky88 (1)
  • carlosal1015 (1)
  • BukovnikMiha (1)
  • fabian-s (1)
Pull Request Authors
  • zStupan (49)
  • dependabot[bot] (47)
  • allcontributors[bot] (11)
  • lahovniktadej (10)
  • vrabiczan (6)
  • erkankarabulut (4)
  • HlisTilen (4)
  • BukovnikMiha (3)
  • howsunjow (3)
  • firefly-cpp (3)
  • arfon (1)
  • musicinmybrain (1)
Top Labels
Issue Labels
enhancement (4) help wanted (3) good first issue (3) bug (2) question (1) dependencies (1)
Pull Request Labels
dependencies (47) python (5) enhancement (2)

Packages

  • Total packages: 21
  • Total downloads:
    • pypi 305 last-month
  • Total dependent packages: 3
    (may contain duplicates)
  • Total dependent repositories: 1
    (may contain duplicates)
  • Total versions: 119
  • Total maintainers: 2
alpine-v3.18: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 14.0%
Stargazers count: 27.5%
Forks count: 28.6%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.18: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 14.0%
Stargazers count: 27.5%
Forks count: 28.6%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.18: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 14.0%
Stargazers count: 27.5%
Forks count: 28.6%
Maintainers (1)
Last synced: 5 months ago
pypi.org: niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 30
  • Dependent Packages: 2
  • Dependent Repositories: 1
  • Downloads: 305 Last month
Rankings
Dependent packages count: 3.2%
Forks count: 16.9%
Stargazers count: 17.1%
Average: 18.0%
Dependent repos count: 22.1%
Downloads: 30.4%
Maintainers (1)
Last synced: 4 months ago
alpine-edge: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 25
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 14.6%
Average: 18.2%
Stargazers count: 28.9%
Forks count: 29.5%
Maintainers (1)
Last synced: 4 months ago
alpine-edge: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 25
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 14.6%
Average: 18.2%
Stargazers count: 28.9%
Forks count: 29.5%
Maintainers (1)
Last synced: 4 months ago
alpine-edge: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 22
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 14.1%
Average: 19.0%
Stargazers count: 30.5%
Forks count: 31.3%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.17: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Average: 19.2%
Stargazers count: 24.6%
Forks count: 25.1%
Dependent packages count: 27.3%
Maintainers (1)
Last synced: 5 months ago
alpine-v3.17: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Average: 19.2%
Stargazers count: 24.6%
Forks count: 25.1%
Dependent packages count: 27.3%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.22: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.19: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.20: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.21: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.19: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Last synced: 4 months ago
alpine-v3.22: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.20: py3-niaarm-doc

A minimalistic framework for numerical association rule mining (documentation)

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 5 months ago
alpine-v3.19: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.20: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.21: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.21: py3-niaarm-pyc

Precompiled Python bytecode for py3-niaarm

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago
alpine-v3.22: py3-niaarm

A minimalistic framework for numerical association rule mining

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 100%
Maintainers (1)
Last synced: 4 months ago

Dependencies

docs/requirements.txt pypi
  • Sphinx ==4.4.0
  • niapy >=2.0.1
  • numpy >=1.22.3
  • pandas >=1.4.0
  • sphinx-rtd-theme ==1.0.0
  • sphinxcontrib-bibtex ==2.4.1
poetry.lock pypi
  • atomicwrites 1.4.0 develop
  • attrs 21.4.0 develop
  • iniconfig 1.1.1 develop
  • pluggy 1.0.0 develop
  • py 1.11.0 develop
  • pytest 7.1.2 develop
  • alabaster 0.7.12
  • babel 2.10.1
  • certifi 2022.5.18.1
  • charset-normalizer 2.0.12
  • click 8.1.3
  • colorama 0.4.4
  • cycler 0.11.0
  • docutils 0.17.1
  • et-xmlfile 1.1.0
  • fonttools 4.33.3
  • idna 3.3
  • imagesize 1.3.0
  • importlib-metadata 4.11.4
  • jinja2 3.1.2
  • joblib 1.1.0
  • kiwisolver 1.4.2
  • latexcodec 2.0.1
  • markupsafe 2.1.1
  • matplotlib 3.5.2
  • niapy 2.0.2
  • nltk 3.7
  • numpy 1.21.6
  • numpy 1.22.4
  • openpyxl 3.0.10
  • packaging 21.3
  • pandas 1.3.5
  • pandas 1.4.2
  • pillow 9.1.1
  • pybtex 0.24.0
  • pybtex-docutils 1.0.1
  • pygments 2.12.0
  • pyparsing 3.0.9
  • python-dateutil 2.8.2
  • pytz 2022.1
  • pyyaml 6.0
  • regex 2022.4.24
  • requests 2.27.1
  • setuptools-scm 6.4.2
  • six 1.16.0
  • snowballstemmer 2.2.0
  • sphinx 4.5.0
  • sphinx-rtd-theme 1.0.0
  • sphinxcontrib-applehelp 1.0.2
  • sphinxcontrib-bibtex 2.4.2
  • sphinxcontrib-devhelp 1.0.2
  • sphinxcontrib-htmlhelp 2.0.0
  • sphinxcontrib-jsmath 1.0.1
  • sphinxcontrib-qthelp 1.0.3
  • sphinxcontrib-serializinghtml 1.1.5
  • tomli 2.0.1
  • tqdm 4.64.0
  • typing-extensions 4.2.0
  • urllib3 1.26.9
  • zipp 3.8.0
pyproject.toml pypi
  • pytest ^7.0.1 develop
  • Sphinx ^4.4.0
  • niapy ^2.0.1
  • nltk ^3.7
  • numpy --- - !ruby/hash:ActiveSupport::HashWithIndifferentAccess version: "^1.21.5" python: ">=3.7,<3.11" - !ruby/hash:ActiveSupport::HashWithIndifferentAccess version: "^1.22.3" python: "^3.11"
  • pandas --- - !ruby/hash:ActiveSupport::HashWithIndifferentAccess version: "^1.3.5" python: ">=3.7.1,<3.8" - !ruby/hash:ActiveSupport::HashWithIndifferentAccess version: "^1.4.0" python: "^3.8"
  • python ^3.7
  • sphinx-rtd-theme ^1.0.0
  • sphinxcontrib-bibtex ^2.4.1
.github/workflows/test.yml actions
  • actions/cache v3 composite
  • actions/checkout v3 composite
  • actions/setup-python v3 composite