egu_2021_lgeo_workshops

Workshop materials for EGU General Assembly 2021 sessions Spatio-temporal trend analysis of spatial climate data (temperature and rainfall) using Python Satellite image processing using Python programming

https://github.com/landscapegeoinformatics/egu_2021_lgeo_workshops

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (4.3%) to scientific vocabulary

Keywords

jupyter-notebooks pandas python satellite-data workshop-materials xarray
Last synced: 6 months ago · JSON representation ·

Repository

Workshop materials for EGU General Assembly 2021 sessions Spatio-temporal trend analysis of spatial climate data (temperature and rainfall) using Python Satellite image processing using Python programming

Basic Info
  • Host: GitHub
  • Owner: LandscapeGeoinformatics
  • License: cc-by-sa-4.0
  • Language: Jupyter Notebook
  • Default Branch: main
  • Homepage:
  • Size: 27.8 MB
Statistics
  • Stars: 23
  • Watchers: 1
  • Forks: 13
  • Open Issues: 0
  • Releases: 1
Topics
jupyter-notebooks pandas python satellite-data workshop-materials xarray
Created almost 5 years ago · Last pushed about 2 years ago
Metadata Files
Readme License Citation

README.md

EGU 2021 Landscape Geoinformatics Workshops

DOI

Workshop materials for EGU General Assembly 2021 sessions:

  • SC5.2 EDI: Satellite image processing using Python programming, Alexander Kmoch, Isaac Buo, Holger Virro, Evelyn Uuemaa

  • SC5.8 EDI: Spatio-temporal trend analysis of spatial climate data (temperature and rainfall) using Python, Alexander Kmoch, Bruno Montibeller, Holger Virro, Evelyn Uuemaa

  • Landscape Geoinformatics, UT

    Isaac Buo

    Bruno Montibeller

    Holger Virro

    Alexander Kmoch

    Evelyn Uuemaa

License

Creative Commons Attribution-ShareAlike 4.0 CC-BY-SA-4.0

Launch notebook demo

  • SC5.2 EDI Binder

  • SC5.2 EDI-light Binder

  • SC5.8 EDI Binder

Owner

  • Name: Landscape Geoinformatics Lab
  • Login: LandscapeGeoinformatics
  • Kind: organization
  • Location: Tartu, Estonia

We are the Landscape Geoinformatics working group at the Chair of Geoinformatics, Department of Geography, University of Tartu, Estonia

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Buo"
  given-names: "Isaac"
  orcid: https://orcid.org/0000-0002-6211-4957
- family-names: "Montibeller"
  given-names: "Bruno"
  orcid: https://orcid.org/0000-0002-5250-8450
- family-names: "Virro"
  given-names: "Holger"
  orcid: https://orcid.org/0000-0001-6110-5453
- family-names: "Kmoch"
  given-names: "Alexander"
  orcid: https://orcid.org/0000-0003-4386-4450
- family-names: "Uuemaa"
  given-names: "Evelyn"
  orcid: https://orcid.org/0000-0002-0782-6740
title: "Landscape Geoinformatics EGU 2021 workshop materials"
version: 1.0.0
doi: 10.5281/zenodo.5876348
date-released: 2021-12-17
url: "https://github.com/LandscapeGeoinformatics/EGU_2021_lgeo_workshops"

GitHub Events

Total
  • Watch event: 4
Last Year
  • Watch event: 4

Issues and Pull Requests

Last synced: 12 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

environment.yml pypi