jart-tud-vcm-memristor-model
Memristor model: Various implementations of the simplified memristor model "JART-TUD VCM"
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (3.1%) to scientific vocabulary
Keywords
Repository
Memristor model: Various implementations of the simplified memristor model "JART-TUD VCM"
Basic Info
- Host: GitHub
- Owner: vntinas
- Language: Python
- Default Branch: main
- Homepage: https://ieeexplore.ieee.org/abstract/document/10192107
- Size: 14.2 MB
Statistics
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
JART-TUD VCM memristor model
Code availability timeline
- Python: Available Beta
- Verilog-A: Available Beta
- Matlab: Available Beta
- LTSPICE: November 20, 2024
- Julia: November 31, 2024
Memristor Current Equation
Simplified memristor current ($I_{\rm M}$) expression
math
\begin{aligned}[b]
I_{\rm M}\left(N_{\rm d},V_{\rm M}, d_{\rm r}, d_{\rm l}\right) = &\textcolor{green}{{p}_{\rm1}(V_{\rm M}, d_{\rm r}, d_{\rm l})}\left(\textcolor{green}{{p}_{\rm2}(V_{\rm M}, d_{\rm r}, d_{\rm l})}\left( e^{\frac{\left(\ln\frac{N_{\rm d}}{N_{\rm d,L}}-\textcolor{green}{{p}_{\rm3}(V_{\rm M}, d_{\rm r}, d_{\rm l})}\right)}{\textcolor{green}{{p}_{\rm4}(V_{\rm M}, d_{\rm r}, d_{\rm l})}}}-1\right)+\left(\ln\frac{N_{\rm d}}{N_{\rm d,L}}-\textcolor{green}{{p}_{\rm3}(V_{\rm M}, d_{\rm r}, d_{\rm l})}\right)\right) \\ &+ \frac{\textcolor{green}{{p}_{\rm5}(V_{\rm M}, d_{\rm r}, d_{\rm l})}}{\left(\textcolor{green}{{p}_{\rm6}(V_{\rm M},d_r,d_l)}+\textcolor{green}{{p}_{\rm7}(V_{\rm M},d_r,d_l)}\cdot\left(\textcolor{green}{{p}_{\rm8}(V_{\rm M},d_r,d_l)}e^{\ln\left(\frac{N_{\rm d}}{N_{\rm d,L}}\right)-\textcolor{green}{{p}_{\rm9}(V_{\rm M},d_r,d_l)}}\right)^{-\textcolor{green}{{p}_{\rm10}(V_{\rm M},d_r,d_l)}}\right)^{1/\textcolor{green}{{p}_{\rm11}(V_{\rm M},d_r,d_l)}}}
\end{aligned}
$p_i$ functions
Applied Voltage VM>0
$p1(V{\rm M}, d{\rm r}, d{\rm l}) = 0$
$p2(V{\rm M}, d{\rm r}, d{\rm l}) = 0$
$p3(V{\rm M}, d{\rm r}, d{\rm l}) = 0$
$p4(V{\rm M}, d{\rm r}, d{\rm l}) = 1$
$p5(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{5,0|f}(d{\rm r}, d{\rm l})\color{black} - \color{blue}p{5,1|f}(d{\rm r}, d{\rm l})\color{black} * e^{-\color{blue}p{5,2|f}(d{\rm r}, d{\rm l})\color{black}*V{\rm M}}$
$p6(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{6,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{6,1|f}(d{\rm r}, d{\rm l})\color{black}*V_{\rm M}$
$p7(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{7,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{7,1|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{7,2|f}(d{\rm r}, d{\rm l})\color{black} * e^{-\color{blue}p{7,3|f}(d{\rm r}, d_{\rm l})\color{black}V_{\rm M}}$
$p8(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{8,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{8,1|f}(d{\rm r}, d{\rm l})\color{black}*V_{\rm M}$
$p9(V{\rm M}, d{\rm r}, d{\rm l}) = 0$
$p{10}(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{10,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{10,1|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{10,2|f}(d{\rm r}, d{\rm l})\color{black}V_{\rm M}^2$
$p{11}(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{11,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{11,1|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{11,2|f}(d{\rm r}, d{\rm l})\color{black}V_{\rm M}^2$
Applied Voltage VM<0
$p1(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{1,0|f}(d{\rm r}, d{\rm l})\color{black}\frac{\color{blue}p{1,1|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{1,2|f}(d{\rm r}, d{\rm l})\color{black} * V{\rm M}^2}{1 + \color{blue}p{1,3|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{1,4|f}(d{\rm r}, d{\rm l})\color{black} * V_{\rm M}^2}$
$p2(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{2,0|f}(d{\rm r}, d_{\rm l})\color{black}$
$p3(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{3,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{3,1|f}(d{\rm r}, d{\rm l})\color{black}*V_{\rm M}$
$p4(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{4,0|f}(d{\rm r}, d{\rm l})\color{black} - \color{blue}p{4,1|f}(d{\rm r}, d{\rm l})\color{black} * e^{-\color{blue}p{4,2|f}(d{\rm r}, d{\rm l})\color{black}*V{\rm M}}$
$p5(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{5,0|f}(d{\rm r}, d{\rm l})\color{black} + \color{blue}p{5,1|f}(d{\rm r}, d{\rm l})\color{black}V{\rm M} + \color{blue}p{5,2|f}(d{\rm r}, d{\rm l})\color{black}V_{\rm M}^2$
$p6(V{\rm M}, d{\rm r}, d{\rm l}) = 1$
$p7(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{7,0|f}(d{\rm r}, d_{\rm l})\color{black}$
$p8(V{\rm M}, d{\rm r}, d{\rm l}) = 1$
$p9(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{9,0|f}(d{\rm r}, d{\rm l})\color{black} + \frac{\color{blue}p{9,1|f}(d{\rm r}, d{\rm l})\color{black} - \color{blue}p{9,0|f}(d{\rm r}, d{\rm l})\color{black}}{1 + e^{\frac{V{\rm M}-\color{blue}p{9,2|f}(d{\rm r}, d{\rm l})\color{black}}{\color{blue}p{9,3|f}(d{\rm r}, d{\rm l})\color{black}}}}$
$p{10}(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{10,0|f}(d{\rm r}, d{\rm l})\color{black} + \frac{\color{blue}p{10,1|f}(d{\rm r}, d{\rm l})\color{black} - \color{blue}p{10,0|f}(d{\rm r}, d{\rm l})\color{black}}{1 + e^{\frac{V{\rm M}-\color{blue}p{10,2|f}(d{\rm r}, d{\rm l})\color{black}}{\color{blue}p{10,3|f}(d{\rm r}, d{\rm l})\color{black}}}}$
$p{11}(V{\rm M}, d{\rm r}, d{\rm l}) = \color{blue}p{11,0|f}(d{\rm r}, d{\rm l})\color{black} + \frac{\color{blue}p{11,1|f}(d{\rm r}, d{\rm l})\color{black} - \color{blue}p{11,0|f}(d{\rm r}, d{\rm l})\color{black}}{1 + e^{\frac{V{\rm M}-\color{blue}p{11,2|f}(d{\rm r}, d{\rm l})\color{black}}{\color{blue}p{11,3|f}(d{\rm r}, d{\rm l})\color{black}}}}$
$p_{i,j|f}$ functions
Applied Voltage VM>0
$p{5,1|f}(d{\rm r}, d{\rm l}) = p{5,0|f}(d{\rm r}, d{\rm l})$
$p{5,1|f}(d{\rm r}, d{\rm l}) = p{5,1} + D{p{5,1,r}}d{\rm r} + D{p_{5,1,l}}d_{\rm l}$
$p{5,2|f}(d{\rm r}, d{\rm l}) = p{5,2}$
$p{6,0|f}(d{\rm r}, d{\rm l}) = p{6,0} + D{p{6,0,r}}*d_{\rm r}$
$p{6,1|f}(d{\rm r}, d{\rm l}) = p{6,1}$
$p{7,0|f}(d{\rm r}, d{\rm l}) = p{7,0} + D{p{7,0,r}}d{\rm r} + D{p_{7,0,r2}}d{\rm r}^2 + D{p{7,0,l}}*d{\rm l}$
$p{7,1|f}(d{\rm r}, d{\rm l}) = p{7,1}$
$p{7,2|f}(d{\rm r}, d{\rm l}) = p{7,2} + D{p{7,2,r}}d{\rm r} + D{p_{7,2,r2}}d{\rm r}^2 + (D{p{7,2,l}} + D{p{7,2,l,r}}*d{\rm r} + D{p{7,2,l,r2}}*d{\rm r}^2) * d{\rm l}$
$p{7,3|f}(d{\rm r}, d{\rm l}) = p{7,3}$
$p{8,0|f}(d{\rm r}, d{\rm l}) = p{8,0} + D{p{8,0,l}}*d_{\rm l}$
$p{8,1|f}(d{\rm r}, d{\rm l}) = p{8,1}$
$p{10,0|f}(d{\rm r}, d{\rm l}) = p{10,0} + D{p{10,0,l}}*d_{\rm l}$
$p{10,1|f}(d{\rm r}, d{\rm l}) = p{10,1}$
$p{10,2|f}(d{\rm r}, d{\rm l}) = p{10,2}$
$p{11,0|f}(d{\rm r}, d{\rm l}) = p{11,0} + D{p{11,0,l}}*d_{\rm l}$
$p{11,1|f}(d{\rm r}, d{\rm l}) = p{11,1}$
$p{11,2|f}(d{\rm r}, d{\rm l}) = p{11,2}$
Applied Voltage VM<0
$p{1,0|f}(d{\rm r}, d{\rm l}) = p{1,0} + D{p{1,0,r}}d{\rm r} + D{p_{1,0,l}}d_{\rm l}$
$p{1,1|f}(d{\rm r}, d{\rm l}) = p{1,1} + D{p{1,1,r}}d{\rm r} + D{p_{1,1,l}}d_{\rm l}$
$p{1,2|f}(d{\rm r}, d{\rm l}) = p{1,2} + D{p{1,2,r}}d{\rm r} + D{p_{1,2,l}}d_{\rm l}$
$p{1,3|f}(d{\rm r}, d{\rm l}) = p{1,3} + D{p{1,3,r}}d{\rm r} + D{p_{1,3,l}}d_{\rm l}$
$p{1,4|f}(d{\rm r}, d{\rm l}) = p{1,4} + D{p{1,4,r}}d{\rm r} + D{p_{1,4,l}}d_{\rm l}$
$p{2,0|f}(d{\rm r}, d{\rm l}) = p{2,0}$
$p{3,0|f}(d{\rm r}, d{\rm l}) = p{3,0} + D{p{3,0,r}}d{\rm r} + D{p_{3,0,l}}d_{\rm l}$
$p{3,1|f}(d{\rm r}, d{\rm l}) = p{3,1} + D{p{3,1,r}}d{\rm r} + D{p_{3,1,l}}d_{\rm l}$
$p{4,0|f}(d{\rm r}, d{\rm l}) = p{4,0}$
$p{4,1|f}(d{\rm r}, d{\rm l}) = p{4,1} + D{p{4,1,r}}d{\rm r} + D{p_{4,1,l}}d_{\rm l}$
$p{4,2|f}(d{\rm r}, d{\rm l}) = p{4,2}$
$p{5,0|f}(d{\rm r}, d_{\rm l}) = 0$
$p{5,1|f}(d{\rm r}, d{\rm l}) = p{5,1} + D{p{5,1,r}}d{\rm r} + D{p_{5,1,l}}d_{\rm l}$
$p{5,2|f}(d{\rm r}, d{\rm l}) = p{5,2} + D{p{5,2,r}}d{\rm r} + D{p_{5,2,r2}}d_{\rm r}^2$
$p{7,0|f}(d{\rm r}, d{\rm l}) = p{7,0} + D{p{7,0,r}}d{\rm r} + D{p_{7,0,l}}d_{\rm l}$
$p{9,0|f}(d{\rm r}, d{\rm l}) = p{9,0} + D{p{9,0,r}}d{\rm r} + D{p_{9,0,l}}d_{\rm l}$
$p{9,1|f}(d{\rm r}, d{\rm l}) = p{9,1}$
$p{9,2|f}(d{\rm r}, d{\rm l}) = p{9,2}$
$p{9,3|f}(d{\rm r}, d{\rm l}) = p{9,3} + D{p{9,3,r}}*d_{\rm r}$
$p{10,0|f}(d{\rm r}, d{\rm l}) = p{10,0}$
$p{10,1|f}(d{\rm r}, d{\rm l}) = p{10,1} + D{p{10,1,r}}*d_{\rm r}$
$p{10,2|f}(d{\rm r}, d{\rm l}) = p{10,2}$
$p{10,3|f}(d{\rm r}, d{\rm l}) = p{10,3}$
$p{11,0|f}(d{\rm r}, d{\rm l}) = p{11,0} + D{p{11,0,r}}*d_{\rm r}$
$p{11,1|f}(d{\rm r}, d{\rm l}) = p{11,1}$
$p{11,2|f}(d{\rm r}, d{\rm l}) = p{11,2}$
$p{11,3|f}(d{\rm r}, d{\rm l}) = p{11,3}$
Fitting parameter values
Applied Voltage VM>0
| Parameter | Vm | d_r | d_l |
|---|---|---|---|
| p1 | 0 | ||
| p2 | 0 | ||
| p3 | 0 | ||
| p4 | 1 | ||
| p5 |
p5,1=1.3769e-03 p5,2=8.1819e-02 |
Dp5,1,r=2.3087e-04 | Dp5,1,l=1.3293e-07 |
| p6 |
p6,0=1.9687e-01 p6,1=-2.1833e-02 |
Dp6,0,r=2.6129e-02 | |
| p7 |
p7,0=-9.7606e+01 p7,1=7.8250e+00 p7,2=9.9296e+01 p7,3=7.1092e-02 |
Dp7,0,r=-7.4338e-01 Dp7,0,r2=1.1713e-01 Dp7,2,r=6.9547e-01 Dp7,2,r2=-1.3724e-01 Dp7,2,l,r=-9.0456e-03 Dp7,2,l,r2=-1.2221e-03 |
Dp7,0,l=2.4377e+00 Dp7,2,l=-2.3728e+00 |
| p8 |
p8,0=1.1713e-01 p8,1=8.1370e-02 |
Dp8,0,l=-3.8320e-03 | |
| p9 | 0 | ||
| p10 |
p10,0=9.7733e-01 p10,1=3.5214e-02 p10,2=1.2856e-02 |
Dp10,0,l=5.9623e-05 | |
| p11 |
p11,0=9.4207e-01 p11,1=3.8953e-02 p11,2=2.3436e-02 |
Dp11,0,l=-6.7239e-04 |
Applied Voltage VM<0
| Parameter | Vm | d_r | d_l |
|---|---|---|---|
| p1 |
p1,0=1.1830e+00 p1,1=-2.7034e-03 p1,2=-4.5379e-06 p1,3=9.9115e-01 p1,4=4.4093e-01 |
Dp1,0,r=-6.2246e-02 Dp1,1,r=-1.8077e-04 Dp1,2,r=1.7313e-04 Dp1,3,r=5.7155e-03 Dp1,4,r=-9.7198e-04 |
Dp1,0,l=1.1419e-01 Dp1,1,l=-2.0831e-04 Dp1,2,l=-8.9677e-05 Dp1,3,l=-2.3237e-02 Dp1,4,l=-1.8507e-03 |
| p2 | -2.5955e+03 | ||
| p3 |
p3,0=6.8845e+00 p3,1=-5.8995e-01 |
Dp3,0,r=1.2536e-01 Dp3,1,r=6.5498e-02 |
Dp3,0,l=2.5983e-01 Dp3,1,l=8.5666e-02 |
| p4 |
p4,0=2.5890e+03 p4,1=-2.9537e+00 p4,2=-5.4031e-01 |
Dp4,1,r=8.2522e-02 | Dp4,1,l=-7.2255e-02 |
| p5 |
p5,0=0 p5,1=6.4705e-04 p5,2=5.1529e-05 |
Dp5,1,r=1.5169e-05 Dp5,2,r=6.7042e-07 Dp5,2,r2=1.0756e-06 |
Dp5,1,l=1.3260e-06 |
| p6 | 1 | ||
| p7 | 1.1708e-01 | Dp7,0,r=4.8662e-04 | Dp7,0,l=3.7351e-03 |
| p8 | 1 | ||
| p9 |
p9,0=3.9052e+00 p9,1=9.6130e+00 p9,2=-4.5637e-01 p9,3=1.4310e+00 |
Dp9,0,r=-5.4723e-01 Dp9,3,r=3.6000e-01 |
Dp9,0,l=3.6802e-02 |
| p10 |
p10,0=4.6925e-01 p10,1=3.4731e+00 p10,2=-1.1871e+00 p10,3=5.6947e-01 |
Dp10,1,r=1.1444e-02 | |
| p11 |
p11,0=1.0667e+01 p11,1=1.2812e-01 p11,2=7.4414e-01 p11,3=4.2381e-01 |
Dp11,0,r=3.6290e-01 |
Owner
- Name: Vasileios Ntinas
- Login: vntinas
- Kind: user
- Repositories: 2
- Profile: https://github.com/vntinas
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: Ntinas
given-names: Vasileios
orcid: https://orcid.org/0000-0002-2367-5567
title: "JART-TUD_VCM_memristor_model"
version: 0.1.0
date-released: 2023-02-18
url: "https://github.com/vntinas/JART-TUD_VCM_memristor_model"
preferred-citation:
type: conference-paper
authors:
- family-names: "Ntinas"
given-names: "Vasileios"
orcid: "https://orcid.org/0000-0002-2367-5567"
- family-names: "Patel"
given-names: "Dharmik"
- family-names: "Wang"
given-names: "Yongmin"
- family-names: "Messaris"
given-names: "Ioannis"
- family-names: "Rana"
given-names: "Vikas"
- family-names: "Menzel"
given-names: "Stephan"
- family-names: "Ascoli"
given-names: "Alon"
- family-names: "Tetzlaff"
given-names: "Ronald"
doi: "10.1109/SMACD58065.2023.10192107"
booktitle: "2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)"
month: 7
title: "A Simplified Variability-Aware VCM Memristor Model for Efficient Circuit Simulation"
year: 2023
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1