labelfusion
Implementation of various label fusion approaches for medical imaging.
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 15 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
1 of 3 committers (33.3%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.5%) to scientific vocabulary
Keywords
Repository
Implementation of various label fusion approaches for medical imaging.
Basic Info
- Host: GitHub
- Owner: FeTS-AI
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://www.fets.ai
- Size: 408 KB
Statistics
- Stars: 14
- Watchers: 1
- Forks: 6
- Open Issues: 2
- Releases: 11
Topics
Metadata Files
README.md
LabelFusion
This repo contains implementation of various label fusion approaches that can be used to fuse multiple labels.
Installation
Default
sh
conda create -n venv_labelFusion python=3.12 -y
conda activate venv_labelFusion
pip install LabelFusion
For Development
```sh
fork to your own repo
git clone ${yourForklabelFusionrepo_link} cd LabelFusion conda create -p ./venv python=3.12 -y conda activate ./venv pip install -e .
develop, push
initiate pull request
```
Available fusion methods:
- Voting (ITK): DOI:10.1016/j.patrec.2005.03.017
- STAPLE (ITK): DOI:10.1109/TMI.2004.830803
- Majority Voting: DOI:10.1007/978-3-319-20801-5_11
- SIMPLE: DOI:10.1109/tmi.2010.2057442
Usage
Command-Line interface
```sh
continue from previous shell
python fusion_run -h -h, --help show this help message and exit -inputs INPUTS The absolute, comma-separated paths of labels that need to be fused -classes CLASSES The expected labels; for example, for BraTS, this should be '0,1,2,3' - not used for STAPLE or ITKVoting -method METHOD The method to apply; currently available: STAPLE | ITKVoting | MajorityVoting | SIMPLE -output OUTPUT The output file to write the results ```
Example: ```sh
continue from previous shell
python fusionrun \ -inputs /path/to/segalgo0.nii.gz,/path/to/segalgo1.nii.gz,/path/to/segalgo2.nii.gz \ -classes 0,1,2,3 \ -method STAPLE \ -output /path/to/segfusion.nii.gz ```
Python interface
```python
assuming virtual environment containing LabelFusion is activated
import SimpleITK as sitk from LabelFusion.wrapper import fuse_images
labeltofuse0 = '/path/to/segalgo0.nii.gz' labeltofuse1 = '/path/to/segalgo1.nii.gz'
imagestofuse = [] imagestofuse.append(sitk.ReadImage(labeltofuse0, sitk.sitkUInt8)) imagestofuse.append(sitk.ReadImage(labeltofuse1, sitk.sitkUInt8)) fusedstaple = fuseimages(imagestofuse, 'staple') # classlist is not needed for staple/itkvoting sitk.WriteImage(fusedstaple, '/path/to/outputstaple.nii.gz') fusedsimple = fuseimages(imagestofuse, 'simple', classlist=[0,1,2,3]) sitk.WriteImage(fusedsimple, '/path/to/outputsimple.nii.gz') ```
Testing
This repo has continuous integration enabled via GitHub Actions for the following operating systems:
- Windows
- Ubuntu
- macOS
And for the following python versions:
- 3.9
- 3.10
- 3.11
- 3.12
Owner
- Name: Federated Tumor Segmentation (FeTS) initiative
- Login: FETS-AI
- Kind: organization
- Email: admin@fets.ai
- Location: Philadelphia, PA
- Website: https://www.fets.ai/
- Twitter: FeTS_AI
- Repositories: 5
- Profile: https://github.com/FETS-AI
Federated Learning in medicine
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Pati" given-names: "Sarthak" orcid: "https://orcid.org/0000-0003-2243-8487" - family-names: "Bakas" given-names: "Spyridon" orcid: "https://orcid.org/0000-0001-8734-6482" title: "LabelFusion" version: 1.0.11 doi: 10.5281/zenodo.4633206 date-released: 2021-03-24 url: "https://github.com/CBICA/LabelFusion"
GitHub Events
Total
- Release event: 1
- Push event: 9
- Pull request event: 2
Last Year
- Release event: 1
- Push event: 9
- Pull request event: 2
Committers
Last synced: almost 3 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| sarthakpati | s****i@h****m | 194 |
| Sarthak Pati | s****i@p****u | 11 |
| dependabot[bot] | 4****]@u****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 7 months ago
All Time
- Total issues: 4
- Total pull requests: 12
- Average time to close issues: about 5 hours
- Average time to close pull requests: 2 days
- Total issue authors: 1
- Total pull request authors: 2
- Average comments per issue: 1.0
- Average comments per pull request: 0.0
- Merged pull requests: 9
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 0
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: 13 minutes
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- sarthakpati (4)
Pull Request Authors
- sarthakpati (11)
- dependabot[bot] (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 21 last-month
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 1
(may contain duplicates) - Total versions: 20
- Total maintainers: 1
pypi.org: labelfusion
Label fusion strategies for multi-class labels.
- Homepage: https://github.com/FETS-AI/LabelFusion
- Documentation: https://labelfusion.readthedocs.io/
- License: Apache-2.0
-
Latest release: 1.0.15
published 9 months ago
Rankings
Maintainers (1)
conda-forge.org: labelfusion
- Homepage: https://github.com/FETS-AI/LabelFusion
- License: LicenseRef-CBICA
-
Latest release: 1.0.11
published almost 5 years ago
Rankings
Dependencies
- actions/cache v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite