https://github.com/berenslab/rfest
A Python 3 toolbox for neural receptive field estimation using splines and Gaussian priors.
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 2 DOI reference(s) in README -
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.7%) to scientific vocabulary
Keywords
Repository
A Python 3 toolbox for neural receptive field estimation using splines and Gaussian priors.
Basic Info
- Host: GitHub
- Owner: berenslab
- License: gpl-3.0
- Language: Python
- Default Branch: master
- Homepage: https://arxiv.org/abs/2108.07537
- Size: 4.98 MB
Statistics
- Stars: 24
- Watchers: 5
- Forks: 3
- Open Issues: 4
- Releases: 2
Topics
Metadata Files
README.md

RFEst v2 is a Python3 toolbox for neural receptive field estimation, featuring methods such as spline-based GLMs, Empirical Bayes with various Gaussian priors, and a few matrix factorization methods.
Supported Methods
Spline-based GLMs [1]
The new GLM module unified both vanilla and spline GLMs.
```python from rfest import GLM
lnp = GLM(distr='poisson', output_nonlinearity='softplus')
add training data
lnp.adddesignmatrix(Xtrain, dims=[25, ], df=[8, ], smooth='cr', name='stimulus') # use spline for stimulus filter lnp.adddesignmatrix(ytrain, dims=[20, ], df=[8, ], smooth='cr', shift=1, name='history') # use spline for history filter
add validation data
lnp.adddesignmatrix(Xdev, name='stimulus') # basis will automatically apply to dev set lnp.adddesignmatrix(ydev, name='history')
intialize model parameters
lnp.initialize(numsubunits=1, dt=dt, method='random', randomseed=2046)
fit model
lnp.fit(y={'train': ytrain, 'dev': ydev}, numiters=1000, verbose=100, stepsize=0.1, beta=0.01) ```
Evidence Optimization
- Ridge Regression
- Automatic Relevance Determination (ARD) [2]
- Automatic Smoothness Determination (ASD) [3]
- Automatic Locality Determination (ALD) [4]
```python from rfest import ASD
asd = ASD(X, y, dims=[5, 20, 15]) # nT, nX, nY p0 = [1., 1., 2., 2., 2.] # sig, rho, 𝛿t, 𝛿y, 𝛿x asd.fit(p0=p0, num_iters=300) ```
Matrix Factorization
A few matrix factorization methods have been implemented as a submodule (MF).
python
from rfest.MF import KMeans, semiNMF
For more information, see here.
Installation
rfest is available on pypi:
sh
pip install rfest
This will install rfest with CPU support.
Alternative, you can clone this repo into a local directory and install via pip editable mode:
sh
git clone https://github.com/berenslab/RFEst
pip install -e RFEst
If you want GPU support, follow the instructions on the JAX github repository to install JAX with GPU support (before installing rfest). For example, for NVIDIA GPUs, run
sh
pip install -U "jax[cuda12]"
Dependencies
numpy
scipy
sklearn
matplotlib
jax
jaxlib
Tutorial
Tutorial notebooks can be found here: https://github.com/huangziwei/notebooks_RFEst
Reference
[1] Huang, Z., Ran, Y., Oesterle, J., Euler, T., & Berens, P. (2021). Estimating smooth and sparse neural receptive fields with a flexible spline basis. Neurons, Behavior, Data Analysis, and Theory, 5(3), 1–30. https://doi.org/10.51628/001c.27578
[2] MacKay, D. J. (1994). Bayesian nonlinear modeling for the prediction competition. ASHRAE transactions, 100(2), 1053-1062.
[3] Sahani, M., & Linden, J. F. (2003). Evidence optimization techniques for estimating stimulus-response functions. In Advances in neural information processing systems (pp. 317-324).
[4] Park, M., & Pillow, J. W. (2011). Receptive field inference with localized priors. PLoS computational biology, 7(10) , e1002219.
Owner
- Name: Berens Lab @ University of Tübingen
- Login: berenslab
- Kind: organization
- Email: philipp.berens@uni-tuebingen.de
- Location: Tübingen, Germany
- Website: https://hertie.ai/data-science
- Repositories: 60
- Profile: https://github.com/berenslab
Department of Data Science at the Hertie Institute for AI in Brain Health, University of Tübingen
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Dependencies
- jax *
- jaxlib *
- matplotlib *
- numpy *
- scipy *
- sklearn *