voodoonet
Machine learning application for detecting liquid droplets in mixed-phase clouds using Doppler cloud radar spectra
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
1 of 5 committers (20.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.9%) to scientific vocabulary
Keywords
Repository
Machine learning application for detecting liquid droplets in mixed-phase clouds using Doppler cloud radar spectra
Basic Info
Statistics
- Stars: 2
- Watchers: 4
- Forks: 1
- Open Issues: 0
- Releases: 16
Topics
Metadata Files
README.md
VoodooNet
Predicting liquid droplets in mixed-phase clouds beyond lidar attenuation using artificial neural nets and Doppler cloud radar spectra
VOODOO is a machine learning approach based convolutional neural networks (CNN) to relate Doppler spectra morphologies to the presence of (supercooled) liquid cloud droplets in mixed-phase clouds.
Installation
Prerequisites
VoodooNet requires Python 3.10.
Before installing VoodooNet, install PyTorch according to your infrastructure. For example on a Linux machine without GPU you might run:
sh
pip3 install torch --extra-index-url https://download.pytorch.org/whl/cpu
From PyPI
sh
pip3 install voodoonet
Locally for development
sh
pip3 install -e .[dev]
Citing
If you wish to acknowledge VoodooNet in your publication, please cite:
Schimmel et al. (2022). Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks. Atmos. Meas. Tech., 15(18), 5343–5366. https://doi.org/10.5194/amt-15-5343-2022
Usage
Make predictions using the default model and settings
```python import glob import voodoonet
rpgfiles = glob.glob('/path/to/rpg/files/*.LV0') probabilityliquid = voodoonet.infer(rpg_files) ```
You can for example plot the resulting liquid probability:
```python import matplotlib.pyplot as plt
plt.pcolor(probability_liquid.T) plt.show() ```

Generate a training data set
Download some RPG-FMCW-94 raw files and corresponding classification files from the Cloudnet data portal API. For example, for Leipzig LIM between 2021-01-10 and 2021-01-15:
sh
curl "https://cloudnet.fmi.fi/api/raw-files?dateFrom=2021-01-10&dateTo=2021-01-15&site=leipzig-lim&instrument=rpg-fmcw-94&filenameSuffix=.LV0" | jq '.[]["downloadUrl"]' | xargs -n1 curl -O
curl "https://cloudnet.fmi.fi/api/files?dateFrom=2021-01-10&dateTo=2021-01-15&site=leipzig-lim&product=classification" | jq '.[]["downloadUrl"]' | xargs -n1 curl -O
```python import glob import voodoonet
rpgfiles = glob.glob('*.LV0') classificationfiles = glob.glob('*classification.nc') voodoonet.generatetrainingdata(rpgfiles, classificationfiles, 'training-data-set.pt') ```
Alternatively, just use N random days:
python
import voodoonet
voodoonet.generate_training_data_for_cloudnet('leipzig-lim', 'training-data-set.pt', n_days=5)
Train a VoodooNet model
```python import voodoonet
precomputedtrainingdataset = 'training-data-set.pt' voodoonet.train(precomputedtrainingdataset, 'trained-model.pt') ```
Make predictions using the new model
```python import glob import voodoonet from voodoonet.utils import VoodooOptions
rpgfiles = glob.glob('/path/to/rpg/files/*.LV0') options = VoodooOptions(trainedmodel='newmodel.pt') probabilityliquid = voodoonet.infer(rpg_files, options=options) ```
Owner
- Name: ACTRIS Cloudnet
- Login: actris-cloudnet
- Kind: organization
- Email: actris-cloudnet@fmi.fi
- Location: Helsinki, Finland
- Website: https://cloudnet.fmi.fi/
- Twitter: ACTRIS_Cloudnet
- Repositories: 12
- Profile: https://github.com/actris-cloudnet
ACTRIS Cloud Remote Sensing Unit (CLU)
Citation (CITATION.cff)
cff-version: 1.2.0
authors:
- family-names: Schimmel
given-names: Willi
orcid: "https://orcid.org/0000-0001-8428-6445"
- family-names: Tukiainen
given-names: Simo
orcid: "https://orcid.org/0000-0002-0651-4622"
title: "VoodooNet"
message: "If you use this software, please cite the article from preferred-citation."
preferred-citation:
type: article
authors:
- family-names: Schimmel
given-names: Willi
orcid: "https://orcid.org/0000-0001-8428-6445"
- family-names: Kalesse-Los
given-names: Heike
orcid: "https://orcid.org/0000-0001-6699-7040"
- family-names: Maahn
given-names: Maximilian
orcid: "https://orcid.org/0000-0002-2580-9100"
- family-names: Vogl
given-names: Teresa
orcid: "https://orcid.org/0000-0002-6696-4967"
- family-names: Foth
given-names: Andreas
orcid: "https://orcid.org/0000-0002-1164-3576"
- family-names: Saavedra Garfias
given-names: Pablo
orcid: "https://orcid.org/0000-0002-4596-946X"
- family-names: Seifert
given-names: Patric
orcid: "https://orcid.org/0000-0002-5626-3761"
title: "Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks"
journal: "Atmospheric Measurement Techniques"
volume: 15
year: 2022
number: 18
pages: 5343-5366
doi: 10.5194/amt-15-5343-2022
GitHub Events
Total
- Issues event: 1
- Release event: 1
- Watch event: 2
- Delete event: 3
- Issue comment event: 2
- Push event: 4
Last Year
- Issues event: 1
- Release event: 1
- Watch event: 2
- Delete event: 3
- Issue comment event: 2
- Push event: 4
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 56
- Total Committers: 5
- Avg Commits per committer: 11.2
- Development Distribution Score (DDS): 0.232
Top Committers
| Name | Commits | |
|---|---|---|
| Simo Tukiainen | s****n@f****i | 43 |
| Niko Leskinen | n****n@f****i | 5 |
| willi | w****l@u****e | 4 |
| Tuomas Siipola | t****a@f****i | 3 |
| Willi Schimmel | s****l@2****p | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 0
- Average time to close issues: about 23 hours
- Average time to close pull requests: N/A
- Total issue authors: 1
- Total pull request authors: 0
- Average comments per issue: 1.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 0
- Average time to close issues: about 23 hours
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 1.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- donaldcummins (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 353 last-month
- Total dependent packages: 1
- Total dependent repositories: 0
- Total versions: 16
- Total maintainers: 3
pypi.org: voodoonet
Machine learning application for detecting liquid droplets in mixed-phase clouds using Doppler cloud radar spectra
- Homepage: https://github.com/actris-cloudnet/voodoonet
- Documentation: https://voodoonet.readthedocs.io/
- License: MIT License Copyright (c) 2022 Willi Schimmel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
Latest release: 0.1.11
published about 1 year ago
Rankings
Dependencies
- actions/checkout v2 composite
- actions/setup-python v1 composite
- softprops/action-gh-release v1 composite
- actions/checkout v2 composite
- actions/setup-python v1 composite
- numpy *
- rpgpy >=0.12.1
- scipy *
- torchmetrics *
- tqdm *
- wandb *