Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: plos.org, zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.2%) to scientific vocabulary
Keywords
amplitude
coupling
event-related
filtering
neuroscience
oscillations
pac
parallel-computing
phase
phase-amplitude-coupling
tensor
Last synced: 4 months ago
·
JSON representation
·
Repository
Phase-Amplitude Coupling under Python
Basic Info
- Host: GitHub
- Owner: EtienneCmb
- License: bsd-3-clause
- Language: Python
- Default Branch: master
- Homepage: https://etiennecmb.github.io/tensorpac/
- Size: 117 MB
Statistics
- Stars: 112
- Watchers: 9
- Forks: 31
- Open Issues: 9
- Releases: 5
Topics
amplitude
coupling
event-related
filtering
neuroscience
oscillations
pac
parallel-computing
phase
phase-amplitude-coupling
tensor
Created over 8 years ago
· Last pushed over 1 year ago
Metadata Files
Readme
License
Citation
README.rst
=========
Tensorpac
=========
.. image:: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg
:target: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac
.. image:: https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master
:target: https://travis-ci.org/EtienneCmb/tensorpac
.. image:: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg
:target: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master
.. image:: https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true
:target: https://ci.appveyor.com/project/EtienneCmb/tensorpac/branch/master
.. image:: https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg
:target: https://codecov.io/gh/EtienneCmb/tensorpac
.. image:: https://badge.fury.io/py/tensorpac.svg
:target: https://badge.fury.io/py/tensorpac
.. image:: https://pepy.tech/badge/tensorpac
:target: https://pepy.tech/project/tensorpac
.. image:: https://badges.gitter.im/EtienneCmb/tensorpac.svg
:target: https://gitter.im/EtienneCmb/tensorpac?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
.. image:: https://zenodo.org/badge/93316276.svg
:target: https://zenodo.org/badge/latestdoi/93316276
.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png
:align: center
Description
-----------
Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our `documentation `_ for details.
Installation
------------
Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :
.. code-block:: console
$ pip install tensorpac
Code snippet & illustration
---------------------------
.. code-block:: python
from tensorpac import Pac
from tensorpac.signals import pac_signals_tort
# Dataset of signals artificially coupled between 10hz and 100hz :
n_epochs = 20 # number of trials
n_times = 4000 # number of time points
sf = 512. # sampling frequency
# Create artificially coupled signals using Tort method :
data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs,
dpha=10, damp=10, sf=sf, n_times=n_times)
# Define a Pac object
p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')
# Filter the data and extract pac
xpac = p.filterfit(sf, data)
# plot your Phase-Amplitude Coupling :
p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5,
title=r'10hz phase$\Leftrightarrow$100Hz amplitude coupling',
fz_title=14, fz_labels=13)
p.show()
.. figure:: https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png
:align: center
Cite Tensorpac
--------------
Tensorpac software has been published in `PLoS Computational Biology `_
Use the following Bibtex entry to cite it :
.. code-block:: latex
@article{combrisson_tensorpac_2020,
title = {Tensorpac: {An} open-source {Python} toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals},
volume = {16},
issn = {1553-7358},
shorttitle = {Tensorpac},
doi = {10.1371/journal.pcbi.1008302},
language = {eng},
number = {10},
journal = {PLoS computational biology},
author = {Combrisson, Etienne and Nest, Timothy and Brovelli, Andrea and Ince, Robin A. A. and Soto, Juan L. P. and Guillot, Aymeric and Jerbi, Karim},
month = oct,
year = {2020},
pmid = {33119593},
pmcid = {PMC7654762},
pages = {e1008302},
}
Owner
- Name: Etienne Combrisson
- Login: EtienneCmb
- Kind: user
- Location: Marseille
- Company: INT
- Repositories: 39
- Profile: https://github.com/EtienneCmb
Postdoc
Citation (CITATION.cff)
cff-version: 1.2.0
message: "Please cite the following works when using this software."
authors:
- family-names: "Combrisson"
given-names: "Etienne"
orcid: "https://orcid.org/0000-0002-7362-3247"
- family-names: "Nest"
given-names: "Timothy"
- family-names: "Brovelli"
given-names: "Andrea"
- family-names: "Ince"
given-names: "Robin A A"
- family-names: "Soto"
given-names: "Juan L P"
- family-names: "Guillot"
given-names: "Aymeric"
- family-names: "Jerbi"
given-names: "Karim"
doi: 10.5281/zenodo.5141481
url: "https://github.com/EtienneCmb/tensorpac"
title: "Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals"
GitHub Events
Total
- Issues event: 2
- Watch event: 20
- Fork event: 5
Last Year
- Issues event: 2
- Watch event: 20
- Fork event: 5
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| EtienneCmb | e****n@g****m | 340 |
| Raphael Vallat | r****9@g****m | 6 |
| Tim | t****t@g****m | 6 |
| Todd | t****8@g****m | 1 |
| Jordan O'Byrne | j****e | 1 |
| Daniel Garcia Moreno | d****a@s****m | 1 |
| tylerbrunette | t****e@p****m | 1 |
Committer Domains (Top 20 + Academic)
packetdigital.com: 1
suse.com: 1
Issues and Pull Requests
Last synced: 5 months ago
All Time
- Total issues: 13
- Total pull requests: 10
- Average time to close issues: 8 months
- Average time to close pull requests: 29 days
- Total issue authors: 12
- Total pull request authors: 7
- Average comments per issue: 1.69
- Average comments per pull request: 1.5
- Merged pull requests: 7
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 2
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 2
- Pull request authors: 1
- Average comments per issue: 0.5
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- guoyongjian111 (2)
- m-bellv (1)
- KareemShalabi (1)
- tylerbrunette (1)
- raphaelvallat (1)
- alirezamahdavi571 (1)
- agramfort (1)
- bonokat (1)
- NikVard (1)
- SynapticSage (1)
- toddrme2178 (1)
- scott-huberty (1)
Pull Request Authors
- raphaelvallat (4)
- SquadHenri (2)
- toddrme2178 (1)
- danigm (1)
- tonoplast (1)
- tylerbrunette (1)
- jnobyrne (1)
Top Labels
Issue Labels
bug (1)
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 7,602 last-month
-
Total dependent packages: 6
(may contain duplicates) -
Total dependent repositories: 8
(may contain duplicates) - Total versions: 14
- Total maintainers: 1
pypi.org: tensorpac
Tensor-based Phase-Amplitude Coupling
- Homepage: http://etiennecmb.github.io/tensorpac/
- Documentation: https://tensorpac.readthedocs.io/
- License: BSD 3-Clause License
-
Latest release: 0.6.5
published over 5 years ago
Rankings
Dependent packages count: 4.7%
Dependent repos count: 5.2%
Downloads: 5.8%
Average: 6.4%
Stargazers count: 8.1%
Forks count: 8.1%
Maintainers (1)
Last synced:
5 months ago
conda-forge.org: tensorpac
- Homepage: https://etiennecmb.github.io/tensorpac
- License: BSD-3-Clause
-
Latest release: 0.6.5
published almost 4 years ago
Rankings
Dependent packages count: 28.8%
Average: 33.6%
Dependent repos count: 34.0%
Stargazers count: 35.3%
Forks count: 36.1%
Last synced:
4 months ago
Dependencies
setup.py
pypi
- joblib *
- numpy *
- scipy *
.github/workflows/tensorpac.yml
actions
- actions/checkout v2 composite
- actions/setup-python v1 composite