https://github.com/bids-apps/hyperalignment

Hyperalignment is a functional alignment method that aligns subjects' brain data in a high-dimensional space of voxels/features.

https://github.com/bids-apps/hyperalignment

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 6 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.6%) to scientific vocabulary

Keywords

bids bidsapp
Last synced: 5 months ago · JSON representation

Repository

Hyperalignment is a functional alignment method that aligns subjects' brain data in a high-dimensional space of voxels/features.

Basic Info
  • Host: GitHub
  • Owner: bids-apps
  • License: apache-2.0
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 44.9 KB
Statistics
  • Stars: 17
  • Watchers: 5
  • Forks: 6
  • Open Issues: 1
  • Releases: 2
Topics
bids bidsapp
Created over 9 years ago · Last pushed over 1 year ago
Metadata Files
Readme License

README.md

Hyperalignment BIDS App (WiP)

Description

Hyperalignment is a functional alignment method that aligns subjects' brain data in a high-dimensional space of voxels/features. We showed that this alignment aligns subjects at a fine-scale affording between-subject decoding and encoding Guntupalli et al. 2016. This app runs searchlight hyperalignment, which runs hyperalignment in multiple searchlights across the whole brain and aggregates them into a single transformation per subject. For now, many parameters such as searchlight size, sparsity of centers, etc., are fixed. Please use PyMVPA to modify these and other parameters for your use case.

Documentation

For a detailed documentation and examples, please see: Hyperalignment in a ROI: http://www.pymvpa.org/generated/mvpa2.algorithms.hyperalignment.Hyperalignment.html Searchlight Hyperalignment: https://github.com/PyMVPA/PyMVPA/blob/master/mvpa2/algorithms/searchlight_hyperalignment.py Example in PyMVPA: http://www.pymvpa.org/examples/hyperalignment.html

Acknowledgements

If you use this in your project, please cite Guntupalli et al. 2016.

Report Bugs/Issues

Please use PyMVPA on github to report any bugs/issues or to contribute: https://github.com/PyMVPA/PyMVPA

Usage

    usage: run.py [-h]
                  [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
                  --task TASK_LABEL --run RUN_LABEL]
                  bids_dir output_dir {participant,group}

    Example BIDS App entrypoint script.

    positional arguments:
      bids_dir              The directory with the input dataset formatted
                            according to the BIDS standard.
      output_dir            The directory where the output files should be stored.
                            If you are running group level analysis this folder
                            should be prepopulated with the results of
                            theparticipant level analysis.
      {participant,group}   Level of the analysis that will be performed. Multiple
                            participant level analyses can be run independently
                            (in parallel).

    optional arguments:
      -h, --help            show this help message and exit
      --participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
                            The label(s) of the participant(s) that should be
                            analyzed. The label corresponds to
                            sub-<participant_label> from the BIDS spec (so it does
                            not include "sub-"). If this parameter is not provided
                            all subjects should be analyzed. Multiple participants
                            can be specified with a space separated list.
      --task TASK_LABEL     Name of the task that should be used for hyperalignment.
                            This correspnds to task-<TASK_LABEL> from the BIDS spec
                            (so it does not include "task-").
      --run RUN_LABEL       Name of the run that should be used for hyperalignment.
                            This correspnds to run-<TASK_LABEL> from the BIDS spec
                            (so it does not include "run-").

Participant level mode prepares the data for hyperalignment. For now, it loads the data from nifti image into PyMVPA readable datasets after applying brain mask. In future, this will be modified to compute individual subject connectomes.

docker run -i --rm \
    -v /Users/swaroop/ds005-deriv/derivatives:/bids_dataset \
    -v /Users/swaroop/outputs:/outputs \
    bids/hyperalignment \
    /bids_dataset /outputs participant \
    --task mixedgamblestask --run 01 --participant_label 01

After running participant level (potentially in parallel), group level analysis runs hyperalignment and saves transformation parameters.

docker run -i --rm -v \
    /Users/swaroop/ds005-deriv/derivatives:/bids_dataset \
    -v /Users/swaroop/outputs:/outputs \
    bids/hyperalignment \
    /bids_dataset /outputs group

Special requirements

Hyperalignment works on preprocessed data with all the subjects' data aligned to the same template.

Relevant references

  1. Guntupalli, J. S., Hanke, M., Halchenko, Y. O., Connolly, A. C., Ramadge, P. J. & Haxby, J. V. (2016). A Model of Representational Spaces in Human Cortex. Cerebral Cortex. DOI: http://dx.doi.org/10.1093/cercor/bhw068
  2. Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., Hanke, M. & Ramadge, P. J. (2011). A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex. Neuron, 72, 404–416. DOI: http://dx.doi.org/10.1016/j.neuron.2011.08.026

Owner

  • Name: BIDS Apps
  • Login: bids-apps
  • Kind: organization

A collection of containerized neuroimaging workflows and pipelines that accept datasets organized according to the Brain Imaging Data Structure (BIDS).

GitHub Events

Total
  • Watch event: 3
  • Delete event: 1
  • Push event: 1
  • Pull request event: 2
Last Year
  • Watch event: 3
  • Delete event: 1
  • Push event: 1
  • Pull request event: 2

Dependencies

Dockerfile docker
  • ubuntu 18.04 build