supar

:rocket: State-of-the-art parsers for natural language.

https://github.com/yzhangcs/parser

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    1 of 3 committers (33.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.5%) to scientific vocabulary

Keywords

constituency-parsing dependency-parsing pytorch semantic-dependency-parsing semiring state-of-the-art structured-prediction transformers
Last synced: 6 months ago · JSON representation ·

Repository

:rocket: State-of-the-art parsers for natural language.

Basic Info
Statistics
  • Stars: 860
  • Watchers: 14
  • Forks: 151
  • Open Issues: 0
  • Releases: 6
Topics
constituency-parsing dependency-parsing pytorch semantic-dependency-parsing semiring state-of-the-art structured-prediction transformers
Created over 7 years ago · Last pushed over 2 years ago
Metadata Files
Readme License Citation

README.md

:rocket: SuPar

build docs release downloads LICENSE

A Python package designed for structured prediction, including reproductions of many state-of-the-art syntactic/semantic parsers (with pretrained models for more than 19 languages),

and highly-parallelized implementations of several well-known structured prediction algorithms.[^1]

Installation

You can install SuPar via pip: sh $ pip install -U supar or from source directly: sh $ pip install -U git+https://github.com/yzhangcs/parser

The following requirements should be satisfied: * python: >= 3.8 * pytorch: >= 1.8 * transformers: >= 4.0

Usage

You can download the pretrained model and parse sentences with just a few lines of code: ```py

from supar import Parser

if the gpu device is available

>>> torch.cuda.set_device('cuda:0')

parser = Parser.load('dep-biaffine-en') dataset = parser.predict('I saw Sarah with a telescope.', lang='en', prob=True, verbose=False) `` By default, we use [stanza](https://github.com/stanfordnlp/stanza) internally to tokenize plain texts for parsing. You only need to specify the language codelang` for tokenization.

The call to parser.predict will return an instance of supar.utils.Dataset containing the predicted results. You can either access each sentence held in dataset or an individual field of all results. Probabilities can be returned along with the results if prob=True. ```py

dataset[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _

print(f"arcs: {dataset.arcs[0]}\n" f"rels: {dataset.rels[0]}\n" f"probs: {dataset.probs[0].gather(1,torch.tensor(dataset.arcs[0]).unsqueeze(1)).squeeze(-1)}") arcs: [2, 0, 2, 2, 6, 4, 2] rels: ['nsubj', 'root', 'dobj', 'prep', 'det', 'pobj', 'punct'] probs: tensor([1.0000, 0.9999, 0.9966, 0.8944, 1.0000, 1.0000, 0.9999]) ```

SuPar also supports parsing from tokenized sentences or from file. For BiLSTM-based semantic dependency parsing models, lemmas and POS tags are needed.

```py

import os import tempfile

if the gpu device is available

>>> torch.cuda.set_device('cuda:0')

dep = Parser.load('dep-biaffine-en') dep.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _

path = os.path.join(tempfile.mkdtemp(), 'data.conllx') with open(path, 'w') as f: ... f.write('''# text = But I found the location wonderful and the neighbors very kind. 1\tBut\t\t\t\t\t\t\t\t 2\tI\t\t\t\t\t\t\t\t 3\tfound\t\t\t\t\t\t\t\t 4\tthe\t\t\t\t\t\t\t\t 5\tlocation\t\t\t\t\t\t\t\t 6\twonderful\t\t\t\t\t\t\t\t 7\tand\t\t\t\t\t\t\t\t 7.1\tfound\t\t\t\t\t\t\t\t 8\tthe\t\t\t\t\t\t\t\t 9\tneighbors\t\t\t\t\t\t\t\t 10\tvery\t\t\t\t\t\t\t\t 11\tkind\t\t\t\t\t\t\t\t 12\t.\t\t\t\t\t\t\t\t

''') ...

dep.predict(path, pred='pred.conllx', verbose=False)[0]

text = But I found the location wonderful and the neighbors very kind.

1 But _ _ _ _ 3 cc _ _ 2 I _ _ _ _ 3 nsubj _ _ 3 found _ _ _ _ 0 root _ _ 4 the _ _ _ _ 5 det _ _ 5 location _ _ _ _ 6 nsubj _ _ 6 wonderful _ _ _ _ 3 xcomp _ _ 7 and _ _ _ _ 6 cc _ _ 7.1 found _ _ _ _ _ _ _ _ 8 the _ _ _ _ 9 det _ _ 9 neighbors _ _ _ _ 11 dep _ _ 10 very _ _ _ _ 11 advmod _ _ 11 kind _ _ _ _ 6 conj _ _ 12 . _ _ _ _ 3 punct _ _

con = Parser.load('con-crf-en') con.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0].prettyprint() TOP
|
S
_
________|___________________
| VP | | ______|_ |
| | | PP | | | | _| |
NP | NP | NP | | | | | |___ |


| | | | | | |
I saw Sarah with a telescope .

sdp = Parser.load('sdp-biaffine-en') sdp.predict([[('I','I','PRP'), ('saw','see','VBD'), ('Sarah','Sarah','NNP'), ('with','with','IN'), ('a','a','DT'), ('telescope','telescope','NN'), ('.','_','.')]], verbose=False)[0] 1 I I PRP _ _ _ _ 2:ARG1 _ 2 saw see VBD _ _ _ _ 0:root|4:ARG1 _ 3 Sarah Sarah NNP _ _ _ _ 2:ARG2 _ 4 with with IN _ _ _ _ _ _ 5 a a DT _ _ _ _ _ _ 6 telescope telescope NN _ _ _ _ 4:ARG2|5:BV _ 7 . _ . _ _ _ _ _ _

```

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Below is an example of training Biaffine Dependency Parser: sh $ python -m supar.cmds.dep.biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

Alternatively, SuPar provides some equivalent command entry points registered in setup.py: dep-biaffine, dep-crf2o, con-crf and sdp-biaffine, etc. sh $ dep-biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

To accommodate large models, distributed training is also supported: sh $ python -m supar.cmds.dep.biaffine train -b -c dep-biaffine-en -d 0,1,2,3 -p model -f char You can consult the PyTorch documentation and tutorials for more details.

Evaluation

The evaluation process resembles prediction: ```py

if the gpu device is available

>>> torch.cuda.set_device('cuda:0')

Parser.load('dep-biaffine-en').evaluate('ptb/test.conllx', verbose=False) loss: 0.2393 - UCM: 60.51% LCM: 50.37% UAS: 96.01% LAS: 94.41% ```

See examples for more instructions on training and evaluation.

Performance

SuPar provides pretrained models for English, Chinese and 17 other languages. The tables below list the performance and parsing speed of pretrained models for different tasks. All results are tested on the machine with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and Nvidia GeForce GTX 1080 Ti GPU.

Dependency Parsing

English and Chinese dependency parsing models are trained on PTB and CTB7 respectively. For each parser, we provide pretrained models that take BiLSTM as encoder. We also provide models trained by finetuning pretrained language models from Huggingface Transformers. We use robert-large for English and hfl/chinese-electra-180g-large-discriminator for Chinese. During evaluation, punctuation is ignored in all metrics for PTB.

| Name | UAS | LAS | Sents/s | | ------------------------- | :---: | ----: | :-----: | | dep-biaffine-en | 96.01 | 94.41 | 1831.91 | | dep-crf2o-en | 96.07 | 94.51 | 531.59 | | dep-biaffine-roberta-en | 97.33 | 95.86 | 271.80 | | dep-biaffine-zh | 88.64 | 85.47 | 1180.57 | | dep-crf2o-zh | 89.22 | 86.15 | 237.40 | | dep-biaffine-electra-zh | 92.45 | 89.55 | 160.56 |

The multilingual dependency parsing model, named dep-biaffine-xlmr, is trained on merged 12 selected treebanks from Universal Dependencies (UD) v2.3 dataset by finetuning xlm-roberta-large. The following table lists results of each treebank. Languages are represented by ISO 639-1 Language Codes.

| Language | UAS | LAS | Sents/s | | -------- | :---: | :---: | ------: | | bg | 96.95 | 94.24 | 343.96 | | ca | 95.57 | 94.20 | 184.88 | | cs | 95.79 | 93.83 | 245.68 | | de | 89.74 | 85.59 | 283.53 | | en | 93.37 | 91.27 | 269.16 | | es | 94.78 | 93.29 | 192.00 | | fr | 94.56 | 91.90 | 219.35 | | it | 96.29 | 94.47 | 254.82 | | nl | 96.04 | 93.76 | 268.57 | | no | 95.64 | 94.45 | 318.00 | | ro | 94.59 | 89.79 | 216.45 | | ru | 96.37 | 95.24 | 243.56 |

Constituency Parsing

We use PTB and CTB7 datasets to train English and Chinese constituency parsing models. Below are the results.

| Name | P | R | F1 | Sents/s | | -------------------- | :---: | :---: | :-----: | ------: | | con-crf-en | 94.16 | 93.98 | 94.07 | 841.88 | | con-crf-roberta-en | 96.42 | 96.13 | 96.28 | 233.34 | | con-crf-zh | 88.82 | 88.42 | 88.62 | 590.05 | | con-crf-electra-zh | 92.18 | 91.66 | 91.92 | 140.45 |

The multilingual model con-crf-xlmr is trained on SPMRL dataset by finetuning xlm-roberta-large. We follow instructions of Benepar to preprocess the data. For simplicity, we then directly merge train/dev/test treebanks of all languages in SPMRL into big ones to train the model. The results of each treebank are as follows.

| Language | P | R | F1 | Sents/s | | -------- | :---: | :---: | :-----: | ------: | | eu | 93.40 | 94.19 | 93.79 | 266.96 | | fr | 88.77 | 88.84 | 88.81 | 149.34 | | de | 93.68 | 92.18 | 92.92 | 200.31 | | he | 94.65 | 95.20 | 94.93 | 172.50 | | hu | 96.70 | 96.81 | 96.76 | 186.58 | | ko | 91.75 | 92.46 | 92.11 | 234.86 | | pl | 97.33 | 97.27 | 97.30 | 310.86 | | sv | 92.51 | 92.50 | 92.50 | 235.49 |

Semantic Dependency Parsing

English semantic dependency parsing models are trained on DM data introduced in SemEval-2014 task 8, while Chinese models are trained on NEWS domain data of corpora from SemEval-2016 Task 9. Our data preprocessing steps follow SecondOrderSDP.

| Name | P | R | F1 | Sents/s | | ------------------- | :---: | :---: | :-----: | ------: | | sdp-biaffine-en | 94.35 | 93.12 | 93.73 | 1067.06 | | sdp-vi-en | 94.36 | 93.52 | 93.94 | 821.73 | | sdp-vi-roberta-en | 95.18 | 95.20 | 95.19 | 264.13 | | sdp-biaffine-zh | 72.93 | 66.29 | 69.45 | 523.36 | | sdp-vi-zh | 72.05 | 67.97 | 69.95 | 411.94 | | sdp-vi-electra-zh | 73.29 | 70.53 | 71.89 | 139.52 |

Citation

The CRF models for Dependency/Constituency parsing are our recent works published in ACL 2020 and IJCAI 2020 respectively. If you are interested in them, please cite: ```bib @inproceedings{zhang-etal-2020-efficient, title = {Efficient Second-Order {T}ree{CRF} for Neural Dependency Parsing}, author = {Zhang, Yu and Li, Zhenghua and Zhang Min}, booktitle = {Proceedings of ACL}, year = {2020}, url = {https://www.aclweb.org/anthology/2020.acl-main.302}, pages = {3295--3305} }

@inproceedings{zhang-etal-2020-fast, title = {Fast and Accurate Neural {CRF} Constituency Parsing}, author = {Zhang, Yu and Zhou, Houquan and Li, Zhenghua}, booktitle = {Proceedings of IJCAI}, year = {2020}, doi = {10.24963/ijcai.2020/560}, url = {https://doi.org/10.24963/ijcai.2020/560}, pages = {4046--4053} } ```

[^1]: The implementations of structured distributions and semirings are heavily borrowed from torchstruct with some tailoring.

Owner

  • Name: Yu Zhang
  • Login: yzhangcs
  • Kind: user
  • Location: Suzhou, China
  • Company: Soochow University

PhD student @SUDA-LA; NLP/CL/ML.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Zhang"
  given-names: "Yu"
  orcid: "https://orcid.org/0000-0002-8345-3835"
title: "SuPar"
date-released: 2020-08-24
url: "https://github.com/yzhangcs/parser"

GitHub Events

Total
  • Issues event: 11
  • Watch event: 32
  • Issue comment event: 14
  • Pull request event: 1
  • Fork event: 8
Last Year
  • Issues event: 11
  • Watch event: 32
  • Issue comment event: 14
  • Pull request event: 1
  • Fork event: 8

Committers

Last synced: over 1 year ago

All Time
  • Total Commits: 493
  • Total Committers: 3
  • Avg Commits per committer: 164.333
  • Development Distribution Score (DDS): 0.006
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
yzhangcs y****s@o****m 490
Koichi Yasuoka y****a@k****p 2
nomalocaris n****s@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 114
  • Total pull requests: 9
  • Average time to close issues: 17 days
  • Average time to close pull requests: 13 days
  • Total issue authors: 68
  • Total pull request authors: 4
  • Average comments per issue: 4.16
  • Average comments per pull request: 2.22
  • Merged pull requests: 6
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 6
  • Pull requests: 1
  • Average time to close issues: about 1 month
  • Average time to close pull requests: N/A
  • Issue authors: 6
  • Pull request authors: 1
  • Average comments per issue: 1.67
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • attardi (17)
  • MinionAttack (7)
  • davebulaval (5)
  • rootofmylife (3)
  • zerogerc (3)
  • emadg (3)
  • KangChou (3)
  • norpadon (2)
  • bitallin (2)
  • Fantabulous-J (2)
  • K-WeiMing (2)
  • cdhx (2)
  • zeeshansayyed (2)
  • yt-liang (2)
  • yuxiazff (2)
Pull Request Authors
  • KoichiYasuoka (4)
  • attardi (3)
  • matejklemen (1)
  • nomalocaris (1)
Top Labels
Issue Labels
stale (18) enhancement (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 1,105 last-month
  • Total dependent packages: 6
  • Total dependent repositories: 14
  • Total versions: 10
  • Total maintainers: 1
pypi.org: supar

Syntactic/Semantic Parsing Models

  • Versions: 10
  • Dependent Packages: 6
  • Dependent Repositories: 14
  • Downloads: 1,105 Last month
Rankings
Dependent packages count: 1.4%
Stargazers count: 2.3%
Average: 3.7%
Dependent repos count: 3.9%
Forks count: 4.2%
Downloads: 6.9%
Maintainers (1)
Last synced: 6 months ago

Dependencies

.github/workflows/build.yml actions
  • actions/cache v2 composite
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/codeql-analysis.yml actions
  • actions/checkout v3 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/autobuild v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/issue.yml actions
  • actions/stale v3 composite
.github/workflows/pages.yml actions
  • actions/checkout v3 composite
  • actions/configure-pages v2 composite
  • actions/deploy-pages v1 composite
  • actions/setup-python v4 composite
  • actions/upload-pages-artifact v1 composite
.github/workflows/release.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
docs/requirements.txt pypi
  • myst-parser *
  • sphinx *
  • sphinx-astrorefs *
  • sphinx-book-theme *
  • sphinxcontrib-bibtex *
setup.py pypi
  • dill *
  • hydra-core >=1.2
  • nltk *
  • numpy >1.21.6
  • omegaconf *
  • pathos *
  • stanza *
  • torch >=1.13.1
  • transformers >=4.0.0