GraphBin-Tk
GraphBin-Tk: assembly graph-based metagenomic binning toolkit - Published in JOSS (2025)
Science Score: 93.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 60 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
○Academic email domains
-
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Scientific Fields
Repository
🌟🧬 GraphBin-Tk: assembly graph-based metagenomic binning toolkit
Basic Info
- Host: GitHub
- Owner: metagentools
- License: gpl-3.0
- Language: Python
- Default Branch: main
- Homepage: https://gbintk.readthedocs.io/en/latest/
- Size: 51.6 MB
Statistics
- Stars: 12
- Watchers: 1
- Forks: 6
- Open Issues: 0
- Releases: 4
Topics
Metadata Files
README.md
GraphBin-Tk: assembly graph-based metagenomic binning toolkit
GraphBin-Tk combines the assembly graph-based metagenomic bin-refinement and binning techniques of GraphBin, GraphBin2 and MetaCoAG along with additional processing functionalities to visualise and evaluate results, into one comprehensive toolkit. GraphBin-Tk enables users to seamlessly perform a wide range of tasks related to metagenomic binning and eliminates any compatibility issues that may arise from running separate tools. GraphBin-Tk is available on bioconda and PyPI.
For detailed instructions on installation and usage, please refer to the documentation hosted at Read the Docs.
Installing GraphBin-Tk
Using conda
You can install GraphBin-Tk using the bioconda distribution. You can download conda from
Anaconda or Miniconda. You can also use mamba instead of conda.
```shell
add channels
conda config --add channels defaults conda config --add channels bioconda conda config --add channels conda-forge
create conda environment
conda create -n gbintk
activate conda environment
conda activate gbintk
install gbintk
conda install -c bioconda gbintk
check gbintk installation
gbintk --help ```
Using pip
You can install GraphBin-Tk using pip from the PyPI distribution.
```shell
install gbintk
pip install gbintk
check gbintk installation
gbintk --help ```
For development
Please follow the steps below to install gbintk using flit for development.
```shell
clone repository
git clone https://github.com/metagentools/gbintk.git
move to gbintk directory
cd gbintk
create and activate conda env
conda env create -f environment.yml conda activate gbintk
install using flit
flit install -s --python which python
test installation
gbintk --help ```
Available subcommands in GraphBin-Tk
Run gbintk --help or gbintk -h to list the help message for GraphBin-Tk.
```shell Usage: gbintk [OPTIONS] COMMAND [ARGS]...
gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit
Options: -v, --version Show the version and exit. -h, --help Show this message and exit.
Commands: graphbin GraphBin: Refined Binning of Metagenomic Contigs using... graphbin2 GraphBin2: Refined and Overlapped Binning of Metagenomic... metacoag MetaCoAG: Binning Metagenomic Contigs via Composition,... prepare Format the initial binning result from an existing binning tool visualise Visualise binning and refinement results evaluate Evaluate the binning results given a ground truth ```
Please refer to DEMO.md for example code to run using test data provided. For further details on available subcommands and examples, please refer to the documentation hosted at Read the Docs.
Citation
GraphBin-Tk is published in the Journal of Open Source Software at https://doi.org/10.21105/joss.07713.
If you use GraphBin-Tk in your work, please cite GraphBin-Tk and the relevant tools.
GraphBin-Tk
Mallawaarachchi et al., (2025). GraphBin-Tk: assembly graph-based metagenomic binning toolkit. Journal of Open Source Software, 10(109), 7713, https://doi.org/10.21105/joss.07713
GraphBin
Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin. GraphBin: Refined binning of metagenomic contigs using assembly graphs. Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307–3313, DOI: https://doi.org/10.1093/bioinformatics/btaa180
GraphBin2
Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. GraphBin2: Refined and Overlapped Binning of Metagenomic Contigs Using Assembly Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020). DOI: https://doi.org/10.4230/LIPIcs.WABI.2020.8
Mallawaarachchi, V.G., Wickramarachchi, A.S. & Lin, Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 16, 3 (2021). DOI: https://doi.org/10.1186/s13015-021-00185-6
MetaCoAG
Mallawaarachchi, V., Lin, Y. (2022). MetaCoAG: Binning Metagenomic Contigs via Composition, Coverage and Assembly Graphs. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-04749-7_5
Vijini Mallawaarachchi and Yu Lin. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. Journal of Computational Biology 2022 29:12, 1357-1376. DOI: https://doi.org/10.1089/cmb.2022.0262
Assemblers used to generate contigs and assembly graphs
Please cite the assembler used for metagenome assembly from the following list.
Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov and Pavel A. Pevzner. metaSPAdes: a new versatile metagenomic assembler. Genome Research (2017) 27:5, 824-834. DOI: https://doi.org/10.1101/gr.213959.116
Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane and Tak-Wah Lam. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:10 (2015), 1674-1676. DOI: https://doi.org/10.1093/bioinformatics/btv033
Mikhail Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy P. L. Smith and Pavel A. Pevzner. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 17, (2020), 1103–1110. DOI: https://doi.org/10.1038/s41592-020-00971-x
Other software
Mina Rho, Haixu Tang and Yuzhen Ye. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Research, Volume 38, Issue 20, 1 November 2010, Page e191. DOI: https://doi.org/10.1093/nar/gkq747
Eddy, S.R. (2011) Accelerated Profile HMM Searches. PLOS Computational Biology 7(10): e1002195. DOI: https://doi.org/10.1371/journal.pcbi.1002195
Making Sense from Sequence — cogent3. URL: https://cogent3.org/
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695. URL: https://python.igraph.org/
Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008. URL: https://networkx.org/
Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: https://doi.org/10.1038/s41586-020-2649-2
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. DOI: https://doi.org/10.1038/s41592-019-0686-2
Funding
GraphBin-Tk is funded by an Essential Open Source Software for Science Grant from the Chan Zuckerberg Initiative.
Owner
- Name: metagentools
- Login: metagentools
- Kind: organization
- Repositories: 4
- Profile: https://github.com/metagentools
JOSS Publication
GraphBin-Tk: assembly graph-based metagenomic binning toolkit
Authors
Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Tags
bioinformatics metagenomics binning contigsGitHub Events
Total
- Create event: 2
- Release event: 2
- Issues event: 5
- Watch event: 2
- Issue comment event: 8
- Push event: 43
- Fork event: 1
Last Year
- Create event: 2
- Release event: 2
- Issues event: 5
- Watch event: 2
- Issue comment event: 8
- Push event: 43
- Fork event: 1
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 11
- Total pull requests: 8
- Average time to close issues: 30 days
- Average time to close pull requests: 1 day
- Total issue authors: 4
- Total pull request authors: 4
- Average comments per issue: 1.45
- Average comments per pull request: 0.38
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 3
- Pull requests: 5
- Average time to close issues: 2 months
- Average time to close pull requests: 1 day
- Issue authors: 3
- Pull request authors: 2
- Average comments per issue: 2.67
- Average comments per pull request: 0.4
- Merged pull requests: 5
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- Vini2 (8)
- cumbof (1)
- telatin (1)
- vinisalazar (1)
Pull Request Authors
- YapengLang (3)
- rmcar17 (2)
- KatherineCaley (2)
- GavinHuttley (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 29 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 6
- Total maintainers: 1
pypi.org: gbintk
gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit
- Documentation: https://gbintk.readthedocs.io/
- License: GNU General Public License v3 or later (GPLv3+)
-
Latest release: 1.0.3
published 7 months ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v4 composite
- github/codeql-action/analyze v3 composite
- github/codeql-action/init v3 composite
- actions/checkout v3 composite
- actions/setup-python v3 composite
- codecov/codecov-action v4.0.1 composite
- biopython *
- click *
- igraph *
- networkx *
- numpy *
- pandas *
- scipy *
- tqdm *
- Jinja2 >=2.10.2
- Markdown >=3.2.1,<3.4
- PyYAML >=5.2
- babel >=2.9.0
- click >=7.0
- ghp-import >=1.0
- importlib_metadata >=4.3
- jinja2 ==3.1.4
- mdx_gh_links >=0.2
- mergedeep >=1.3.4
- mkdocs >=1.3.1
- mkdocs-material *
- mkdocs-redirects >=1.0.1
- packaging >=20.5
- pygments >=2.12
- pymdown-extensions *
- pyyaml_env_tag >=0.1
- watchdog >=2.0.0
- actions/checkout v4 composite
- actions/setup-python v3 composite
- pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite