GraphBin-Tk

GraphBin-Tk: assembly graph-based metagenomic binning toolkit - Published in JOSS (2025)

https://github.com/metagentools/gbintk

Science Score: 93.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 60 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

assembly-graph bioinformatics contigs metagenomic-binning metagenomics

Scientific Fields

Biology Life Sciences - 69% confidence
Last synced: 4 months ago · JSON representation

Repository

🌟🧬 GraphBin-Tk: assembly graph-based metagenomic binning toolkit

Basic Info
Statistics
  • Stars: 12
  • Watchers: 1
  • Forks: 6
  • Open Issues: 0
  • Releases: 4
Topics
assembly-graph bioinformatics contigs metagenomic-binning metagenomics
Created almost 3 years ago · Last pushed 7 months ago
Metadata Files
Readme Contributing License Code of conduct

README.md

GraphBin-Tk: assembly graph-based metagenomic binning toolkit

GitHub License DOI install with bioconda Conda PyPI version CI codecov CodeQL Documentation Status Code style: black

GraphBin-Tk combines the assembly graph-based metagenomic bin-refinement and binning techniques of GraphBin, GraphBin2 and MetaCoAG along with additional processing functionalities to visualise and evaluate results, into one comprehensive toolkit. GraphBin-Tk enables users to seamlessly perform a wide range of tasks related to metagenomic binning and eliminates any compatibility issues that may arise from running separate tools. GraphBin-Tk is available on bioconda and PyPI.

Initial binning

For detailed instructions on installation and usage, please refer to the documentation hosted at Read the Docs.

Installing GraphBin-Tk

Using conda

You can install GraphBin-Tk using the bioconda distribution. You can download conda from Anaconda or Miniconda. You can also use mamba instead of conda.

```shell

add channels

conda config --add channels defaults conda config --add channels bioconda conda config --add channels conda-forge

create conda environment

conda create -n gbintk

activate conda environment

conda activate gbintk

install gbintk

conda install -c bioconda gbintk

check gbintk installation

gbintk --help ```

Using pip

You can install GraphBin-Tk using pip from the PyPI distribution.

```shell

install gbintk

pip install gbintk

check gbintk installation

gbintk --help ```

For development

Please follow the steps below to install gbintk using flit for development.

```shell

clone repository

git clone https://github.com/metagentools/gbintk.git

move to gbintk directory

cd gbintk

create and activate conda env

conda env create -f environment.yml conda activate gbintk

install using flit

flit install -s --python which python

test installation

gbintk --help ```

Available subcommands in GraphBin-Tk

Run gbintk --help or gbintk -h to list the help message for GraphBin-Tk.

```shell Usage: gbintk [OPTIONS] COMMAND [ARGS]...

gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit

Options: -v, --version Show the version and exit. -h, --help Show this message and exit.

Commands: graphbin GraphBin: Refined Binning of Metagenomic Contigs using... graphbin2 GraphBin2: Refined and Overlapped Binning of Metagenomic... metacoag MetaCoAG: Binning Metagenomic Contigs via Composition,... prepare Format the initial binning result from an existing binning tool visualise Visualise binning and refinement results evaluate Evaluate the binning results given a ground truth ```

Please refer to DEMO.md for example code to run using test data provided. For further details on available subcommands and examples, please refer to the documentation hosted at Read the Docs.

Citation

GraphBin-Tk is published in the Journal of Open Source Software at https://doi.org/10.21105/joss.07713.

If you use GraphBin-Tk in your work, please cite GraphBin-Tk and the relevant tools.

GraphBin-Tk

Mallawaarachchi et al., (2025). GraphBin-Tk: assembly graph-based metagenomic binning toolkit. Journal of Open Source Software, 10(109), 7713, https://doi.org/10.21105/joss.07713

GraphBin

Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin. GraphBin: Refined binning of metagenomic contigs using assembly graphs. Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307–3313, DOI: https://doi.org/10.1093/bioinformatics/btaa180

GraphBin2

Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. GraphBin2: Refined and Overlapped Binning of Metagenomic Contigs Using Assembly Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020). DOI: https://doi.org/10.4230/LIPIcs.WABI.2020.8

Mallawaarachchi, V.G., Wickramarachchi, A.S. & Lin, Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 16, 3 (2021). DOI: https://doi.org/10.1186/s13015-021-00185-6

MetaCoAG

Mallawaarachchi, V., Lin, Y. (2022). MetaCoAG: Binning Metagenomic Contigs via Composition, Coverage and Assembly Graphs. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-04749-7_5

Vijini Mallawaarachchi and Yu Lin. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. Journal of Computational Biology 2022 29:12, 1357-1376. DOI: https://doi.org/10.1089/cmb.2022.0262

Assemblers used to generate contigs and assembly graphs

Please cite the assembler used for metagenome assembly from the following list.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov and Pavel A. Pevzner. metaSPAdes: a new versatile metagenomic assembler. Genome Research (2017) 27:5, 824-834. DOI: https://doi.org/10.1101/gr.213959.116

Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane and Tak-Wah Lam. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:10 (2015), 1674-1676. DOI: https://doi.org/10.1093/bioinformatics/btv033

Mikhail Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy P. L. Smith and Pavel A. Pevzner. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 17, (2020), 1103–1110. DOI: https://doi.org/10.1038/s41592-020-00971-x

Other software

Mina Rho, Haixu Tang and Yuzhen Ye. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Research, Volume 38, Issue 20, 1 November 2010, Page e191. DOI: https://doi.org/10.1093/nar/gkq747

Eddy, S.R. (2011) Accelerated Profile HMM Searches. PLOS Computational Biology 7(10): e1002195. DOI: https://doi.org/10.1371/journal.pcbi.1002195

Making Sense from Sequence — cogent3. URL: https://cogent3.org/

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695. URL: https://python.igraph.org/

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008. URL: https://networkx.org/

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: https://doi.org/10.1038/s41586-020-2649-2

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. DOI: https://doi.org/10.1038/s41592-019-0686-2

Funding

GraphBin-Tk is funded by an Essential Open Source Software for Science Grant from the Chan Zuckerberg Initiative.

Owner

  • Name: metagentools
  • Login: metagentools
  • Kind: organization

JOSS Publication

GraphBin-Tk: assembly graph-based metagenomic binning toolkit
Published
May 28, 2025
Volume 10, Issue 109, Page 7713
Authors
Vijini Mallawaarachchi ORCID
Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
Anuradha Wickramarachchi ORCID
Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
Robert McArthur ORCID
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Yapeng Lang ORCID
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Katherine Caley ORCID
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Gavin Huttley ORCID
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
Editor
Arfon Smith ORCID
Tags
bioinformatics metagenomics binning contigs

GitHub Events

Total
  • Create event: 2
  • Release event: 2
  • Issues event: 5
  • Watch event: 2
  • Issue comment event: 8
  • Push event: 43
  • Fork event: 1
Last Year
  • Create event: 2
  • Release event: 2
  • Issues event: 5
  • Watch event: 2
  • Issue comment event: 8
  • Push event: 43
  • Fork event: 1

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 11
  • Total pull requests: 8
  • Average time to close issues: 30 days
  • Average time to close pull requests: 1 day
  • Total issue authors: 4
  • Total pull request authors: 4
  • Average comments per issue: 1.45
  • Average comments per pull request: 0.38
  • Merged pull requests: 8
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 3
  • Pull requests: 5
  • Average time to close issues: 2 months
  • Average time to close pull requests: 1 day
  • Issue authors: 3
  • Pull request authors: 2
  • Average comments per issue: 2.67
  • Average comments per pull request: 0.4
  • Merged pull requests: 5
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • Vini2 (8)
  • cumbof (1)
  • telatin (1)
  • vinisalazar (1)
Pull Request Authors
  • YapengLang (3)
  • rmcar17 (2)
  • KatherineCaley (2)
  • GavinHuttley (1)
Top Labels
Issue Labels
good first issue (5) enhancement (2) documentation (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 29 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 6
  • Total maintainers: 1
pypi.org: gbintk

gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit

  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 29 Last month
Rankings
Dependent packages count: 10.3%
Average: 34.2%
Dependent repos count: 58.1%
Maintainers (1)
Last synced: 4 months ago

Dependencies

.github/workflows/codeql.yml actions
  • actions/checkout v4 composite
  • github/codeql-action/analyze v3 composite
  • github/codeql-action/init v3 composite
.github/workflows/testing_python_app.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
  • codecov/codecov-action v4.0.1 composite
pyproject.toml pypi
  • biopython *
  • click *
  • igraph *
  • networkx *
  • numpy *
  • pandas *
  • scipy *
  • tqdm *
docs/requirements.txt pypi
  • Jinja2 >=2.10.2
  • Markdown >=3.2.1,<3.4
  • PyYAML >=5.2
  • babel >=2.9.0
  • click >=7.0
  • ghp-import >=1.0
  • importlib_metadata >=4.3
  • jinja2 ==3.1.4
  • mdx_gh_links >=0.2
  • mergedeep >=1.3.4
  • mkdocs >=1.3.1
  • mkdocs-material *
  • mkdocs-redirects >=1.0.1
  • packaging >=20.5
  • pygments >=2.12
  • pymdown-extensions *
  • pyyaml_env_tag >=0.1
  • watchdog >=2.0.0
.github/workflows/pypi-publish.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v3 composite
  • pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite
environment.yml pypi