penquins

A python client for Kowalski

https://github.com/dmitryduev/penquins

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    1 of 5 committers (20.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.4%) to scientific vocabulary

Keywords

kowalski python-client ztf ztf-ii

Keywords from Contributors

astronomy collaborative-research lsst transient-astronomy variable-stars
Last synced: 4 months ago · JSON representation ·

Repository

A python client for Kowalski

Basic Info
  • Host: GitHub
  • Owner: dmitryduev
  • License: mit
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 368 KB
Statistics
  • Stars: 6
  • Watchers: 3
  • Forks: 8
  • Open Issues: 3
  • Releases: 6
Topics
kowalski python-client ztf ztf-ii
Created over 5 years ago · Last pushed over 1 year ago
Metadata Files
Readme License Citation

readme.md

penquins: a python client for Kowalski

DOI

penquins is a python client for Kowalski, a multi-survey data archive and alert broker for time-domain astronomy.

Quickstart

Install penquins from PyPI:

bash pip install penquins --upgrade

Connect to a Kowalski instance:

```python from penquins import Kowalski

username = "" password = ""

protocol, host, port = "https", "", 443

kowalski = Kowalski( username=username, password=password, protocol=protocol, host=host, port=port ) ``` When connecting to only one instance, it will be labeled as "default". Keep this in mind when retrieving the results of your queries.

Connect to multiple Kowalski instances:

```python from penquins import Kowalski

instances = { "kowalski": { "name": "kowalski", "host": "", "protocol": "https" "port": 443, "token": "" # or username and password }, ... }

kowalski = Kowalski(instances=instances) ```

When using multiple instances at once, you can specify a single instance to query using its name when calling query(name=...), or no name at all. If no name is provided and the catalog(s) being queried is/are available on multiple instances, penquins will divide the load between instances automagically.

When retrieving the results, you'll have to use the instance(s) name instead of "default", or simply iterate over the results by instance and merge the results.

It is recommended to authenticate once and then just reuse the generated token:

```python token = kowalski.token print(token)

kowalski = Kowalski( token=token, protocol=protocol, host=host, port=port ) ```

Check connection:

python kowalski.ping()

Querying a Kowalski instance

Most users will be interacting with Kowalski using the Kowalski.query method.

Retrieve available catalog names:

```python query = { "querytype": "info", "query": { "command": "catalognames", } }

response = kowalski.query(query=query) data = response.get("default").get("data") ```

Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near query:

```python query = { "querytype": "near", "query": { "maxdistance": 2, "distanceunits": "arcsec", "radec": {"querycoords": [281.15902595, -4.4160933]}, "catalogs": { "ZTFsources20210401": { "filter": {}, "projection": {"id": 1}, } }, }, "kwargs": { "maxtime_ms": 10000, "limit": 7, }, }

response = kowalski.query(query=query) data = response.get("default").get("data") ```

Retrieve available catalog names:

```python query = { "querytype": "info", "query": { "command": "catalognames", } }

response = k.query(query=query) data = response.get("default").get("data") ```

Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near query:

```python query = { "querytype": "near", "query": { "maxdistance": 2, "distanceunits": "arcsec", "radec": {"querycoords": [281.15902595, -4.4160933]}, "catalogs": { "ZTFsources20210401": { "filter": {}, "projection": {"id": 1}, } }, }, "kwargs": { "maxtime_ms": 10000, "limit": 7, }, }

response = k.query(query=query) data = response.get("default").get("data") ```

Run a cone_search query:

```python query = { "querytype": "conesearch", "query": { "objectcoordinates": { "conesearchradius": 2, "conesearchunit": "arcsec", "radec": { "ZTF20acfkzcg": [ 115.7697847, 50.2887778 ] } }, "catalogs": { "ZTFalerts": { "filter": {}, "projection": { "id": 0, "candid": 1, "objectId": 1 } } } }, "kwargs": { "filterfirst": False } }

response = kowalski.query(query=query) data = response.get("default").get("data") ```

Run a find query:

```python q = { "querytype": "find", "query": { "catalog": "ZTFalerts", "filter": { "objectId": "ZTF20acfkzcg" }, "projection": { "_id": 0, "candid": 1 } } }

response = kowalski.query(query=q) data = response.get("default").get("data") ```

Run a batch of queries in parallel:

```python queries = [ { "querytype": "find", "query": { "catalog": "ZTFalerts", "filter": { "candid": alert["candid"] }, "projection": { "_id": 0, "candid": 1 } } } for alert in data ]

responses = k.query(queries=queries, usebatchquery=True, maxnthreads=4) ```

Querying multiple instances at once

When using multiple instances at once, you can specify a single instance to query using its name when calling query(name=...), or no name at all. If no name is provided, and the catalog(s) being queried is/are available on multiple instances, penquins will divide the load between instances automagically.

When retrieving the results, you'll have to use the instance(s) name instead of "default", or simply iterate over the results by instance and merge the results.

Any of the queries mentioned for single instance querying also work here.

Examples

No instance name specified:

```python q = { "querytype": "find", "query": { "catalog": "ZTFalerts", "filter": { "objectId": "ZTF20acfkzcg" }, "projection": { "id": 0, "candid": 1 } } } response = kowalski.query(query=q) data = response.get(<instancename).get("data") # retrieving data from one instance

OR

data = [] # or {} depending on the query's expected result, differs by query type for instance, instanceresults in response.items(): for result in instanceresults: data.append(result.get('data')) ```

Instance name specified: python q = { "query_type": "find", "query": { "catalog": "ZTF_alerts", "filter": { "objectId": "ZTF20acfkzcg" }, "projection": { "_id": 0, "candid": 1 } } } response = kowalski.query(query=q, name=<instance_name>) data = response.get(<instance_name).get("data") # retrieving data from one instance

Interacting with the API

Users can interact with Kowalski's API in a more direct way using the Kowalski.api method.

Users with admin privileges can add/remove users to/from the system:

```python username = "noone" password = "nopas!" email = "user@caltech.edu"

request = { "username": username, "password": password, "email": email }

response = kowalski.api(method="post", endpoint="/api/users", data=request)

response = kowalski.api(method="delete", endpoint=f"/api/users/{username}") ```

Publish new version

Please refer to https://realpython.com/pypi-publish-python-package/ for a detailed guide.

```shell script pip install bumpversion export PENQUINS_VERSION=2.4.2

bumpversion --current-version $PENQUINSVERSION minor setup.py penquins/penquins.py python setup.py sdist bdistwheel

twine check dist/$PENQUINS_VERSION twine upload dist/$PENQUINS_VERSION

username: token token: ```

Owner

  • Name: Dmitry Duev
  • Login: dmitryduev
  • Kind: user
  • Location: California

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: "Duev"
    given-names: "Dmitry"
    orcid: "https://orcid.org/0000-0001-5060-8733"
title: "dmitryduev/penquins: a python client for dmitryduev/kowalski"
version: v2.1.2
date-released: 2021-11-07
doi: 10.5281/zenodo.5651471
url: "https://github.com/dmitryduev/penquins"

GitHub Events

Total
  • Watch event: 1
Last Year
  • Watch event: 1

Committers

Last synced: almost 3 years ago

All Time
  • Total Commits: 28
  • Total Committers: 5
  • Avg Commits per committer: 5.6
  • Development Distribution Score (DDS): 0.429
Top Committers
Name Email Commits
dmitryduev d****v@g****m 16
Dmitry Duev d****v@u****m 9
Michael Coughlin m****n@g****m 1
Theophile du Laz t****z@g****m 1
Leo Singer l****r@l****g 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 6
  • Total pull requests: 33
  • Average time to close issues: 29 days
  • Average time to close pull requests: 9 days
  • Total issue authors: 5
  • Total pull request authors: 7
  • Average comments per issue: 2.5
  • Average comments per pull request: 1.91
  • Merged pull requests: 29
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • dmitryduev (2)
  • simeonreusch (1)
  • stefanv (1)
  • Theodlz (1)
  • zvanderbosch (1)
Pull Request Authors
  • Theodlz (19)
  • dmitryduev (11)
  • mcoughlin (2)
  • lpsinger (2)
  • bfhealy (2)
  • simeonreusch (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 1,011 last-month
  • Total dependent packages: 3
  • Total dependent repositories: 21
  • Total versions: 10
  • Total maintainers: 3
pypi.org: penquins

A python client for Kowalski

  • Versions: 10
  • Dependent Packages: 3
  • Dependent Repositories: 21
  • Downloads: 1,011 Last month
Rankings
Dependent repos count: 3.2%
Dependent packages count: 3.3%
Downloads: 5.0%
Average: 9.5%
Forks count: 12.7%
Stargazers count: 23.3%
Last synced: 5 months ago

Dependencies

setup.py pypi
  • pymongo >=3.10.1
  • pytest >=5.3.1
  • requests >=2.25.0
  • tqdm >=4.46.0
.github/workflows/lint.yaml actions
  • actions/checkout v2 composite
  • actions/setup-python v1 composite
.github/workflows/test.yaml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
requirements.txt pypi
  • pymongo >=3.10.1
  • pytest >=5.3.1
  • requests >=2.25.0
  • tqdm >=4.46.0