moatless-tools
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.8%) to scientific vocabulary
Keywords
Repository
Basic Info
Statistics
- Stars: 577
- Watchers: 10
- Forks: 53
- Open Issues: 21
- Releases: 1
Topics
Metadata Files
README.md
Moatless Tools
Moatless Tools is a hobby project where I experiment with some ideas I have about how LLMs can be used to edit code in large existing codebases. I believe that rather than relying on an agent to reason its way to a solution, it is crucial to build good tools to insert the right context into the prompt and handle the response.
For the implementation used in the paper SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement, please see moatless-tree-search.
SWE-Bench
I use the SWE-bench benchmark as a way to verify my ideas.
- Claude 4 Sonnet - 70.8% solve rate, $0.63 per instance.
Try it out
Run in Docker
Clone the repository:
bash git clone https://github.com/aorwall/moatless-tools.git cd moatless-toolsSet up environment variables:
bash cp .env.example .env
Edit the .env file to set your API keys and other configuration options, including the required MOATLESS_DIR variable:
MOATLESS_DIR=/path/to/your/moatless/data
Note: MOATLESS_DIR specifies the directory where Moatless will store configuration files and trajectory data. This directory will be mounted as a volume in the Docker containers.
Start the services:
bash make runAccess the UI at http://localhost
Install from PyPI
```bash
Install base package only
pip install moatless
Install with Kubernetes runner support
pip install "moatless[kubernetes]" ```
Install from source
Clone the repository and install using Poetry
```bash
Clone the repository
git clone https://github.com/aorwall/moatless-tools.git cd moatless-tools
Install using uv
uv sync ```
Code Examples
Basic agent flow
```python from moatless.actions import Respond from moatless.agent import ActionAgent from moatless.completion.tool_call import ToolCallCompletionModel
completionmodel = ToolCallCompletionModel( model="gpt-4.1-mini", temperature=0.0, modelapi_key="" )
agent = ActionAgent( completionmodel=completionmodel, system_prompt="You are a helpful assistant that can answer questions.", actions=[ Respond() ] )
observation = await agent.run_simple("Hello")
print(observation.message) ```
Code inspector agent
notebooks/codeinspectoragent.ipynb
Run SWE-Bench evaluations
Before running the evaluation, you'll need: 1. At least one LLM provider API key (e.g., OpenAI, Anthropic, etc.) 2. A Voyage AI API key from voyageai.com to use the pre-embedded vector stores for SWE-Bench instances.
Verify Setup
Before running the full evaluation, you can verify your setup running a simple SWE-Bench instance.
bash
uv run python scripts/docker_run.py --flow swebench_tools --model-id gpt-4o-mini-2024-07-18 --instance-id django__django-11099 --evaluation-name testing_setup
The script will run the model against a sample SWE-Bench instance
Results are saved in .moatless/projects/testing_setup.
Run evaluation
Evaluation script to run evaluation in a docker containers.
bash
python3 scripts/run_evaluation.py --model gpt-4o-mini-2024-07-18 --dataset-split [dataset_split] --evaluation-name [evaluation_name]
Required arguments:
- --dataset-split: Dataset split to use
- --evaluation-name: Name of the evaluation
Optional arguments:
- --model: Model to use for evaluation (default: gpt-4o-mini-2024-07-18, equivalent to --model-id)
- --model-id: Model configuration ID to use (replaces entire model configuration)
- --litellm-model-name: LiteLLM model name to override (keeps other model settings)
- --flow: Flow to use for evaluation (defaults to "simple_coding")
- --num-parallel-jobs: Number of parallel jobs (default: 1)
Flows
Available flows that can be specified with the --flow argument:
| Flow ID | Format | Best Suited For | Default Model | |---------|--------|-----------------|---------------| | swebenchtools | Function calling | Models with native function calling support | gpt-4o-mini-2024-07-18 | | swebenchtoolsandreasoning | Function calling | Reasoning models with native function calling support | claude-sonnet-4-20250514 | | swebenchreact | ReACT | Open source models without native function calling support | openrouter/mistralai/devstral-small | | swebenchreact_reasoning | ReACT | Reasoning models without function calling support | openrouter/deepseek/deepseek-r1-0528 |
Model Configuration
Both evaluation scripts support flexible model configuration through the following options:
Model Options
--model-id: Specify a complete model configuration ID. This replaces the entire completion model configuration including temperature, max tokens, and all other settings.--litellm-model-name: Override only the LiteLLM model name while keeping all other completion model settings (temperature, max tokens, etc.) from the flow or model configuration.
Verified Models
Default model configurations are provided for verified models. Note that other models may work but have not been extensively tested. Verified models are models that have been tested and found to work with the Verified Mini subset of the SWE-Bench dataset.
When specifying just the --model-id argument, the following configurations are used:
| Model | Response Format | Message History | Thoughts in Action | Verified Mini | |-------|----------------|-----------------|-------------------|---------------| | claude-3-5-sonnet-20241022 | toolcall | messages | no | 46% | | claude-3-5-haiku-20241022 | toolcall | messages | no | 28% | | gpt-4o-2024-11-20 | toolcall | messages | yes | 32% | | gpt-4o-mini-2024-07-18 | toolcall | messages | yes | 16% | | o1-mini-2024-09-12 | react | react | no (disabled thoughts) | 28% | | deepseek/deepseek-chat | react | react | no | 36% | | deepseek/deepseek-reasoner | react | react | no (disabled thoughts) | 50% | | gemini/gemini-2.0-flash-exp | react | react | no | 38% | | openrouter/meta-llama/llama-3.1-70b-instruct | react | react | no | - | | openrouter/meta-llama/llama-3.1-405b-instruct | react | react | no | 28% | - | | openrouter/qwen/qwen-2.5-coder-32b-instruct | react | react | no | 32% | - |
Dataset splits
Available dataset splits that can be specified with the --dataset-split argument:
| Split Name | Description | Instance Count | |------------|-------------|----------------| | lite | All instances from the lite dataset | 300 | | verified | All instances from the verified dataset | 500 | | verifiedmini | MariusHobbhahn/swe-bench-verified-mini, a subset of SWE-Bench Verified | 50 | | liteandverifiedsolvable | Instances that exist in both lite and verified datasets and have at least one solved submission to SWE-Bench | 84 |
Example usage
```bash
Run evaluation with Claude 3.5 Sonnet using complete model configuration
python3 scripts/runevaluation.py \ --model-id claude-3-5-sonnet-20241022 \ --flow swebenchtoolsandreasoning \ --dataset-split verified_mini \ --num-parallel-jobs 5
Run evaluation overriding just the model name while keeping flow's model settings
python3 scripts/runevaluation.py \ --litellm-model-name openrouter/qwen/qwen-2.5-coder-32b-instruct \ --flow swebenchreact \ --dataset-split verified_mini \ --num-parallel-jobs 5
Owner
- Name: Albert Örwall
- Login: aorwall
- Kind: user
- Location: Göteborg
- Repositories: 5
- Profile: https://github.com/aorwall
Citation (CITATION.cff)
cff-version: 1.2.0
message: Please cite this project using these metadata.
title: "Moatless Tools"
type: software
authors:
- family-names: Örwall
given-names: Albert
orcid: https://orcid.org/0009-0001-8645-6601
doi: 10.5281/zenodo.15614422
date-released: 2024-06-23
repository-code: "https://github.com/aorwall/moatless-tools"
url: "https://github.com/aorwall/moatless-tools"
license: MIT
GitHub Events
Total
- Issues event: 12
- Watch event: 265
- Issue comment event: 18
- Push event: 109
- Pull request event: 22
- Fork event: 22
- Create event: 13
Last Year
- Issues event: 12
- Watch event: 265
- Issue comment event: 18
- Push event: 109
- Pull request event: 22
- Fork event: 22
- Create event: 13
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Albert Örwall | a****t@m****i | 88 |
| Jens Roland | m****l@j****m | 5 |
| Minsoo Kim | 4****m | 1 |
| B?! | 1****h | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 24
- Total pull requests: 34
- Average time to close issues: 8 days
- Average time to close pull requests: 8 days
- Total issue authors: 15
- Total pull request authors: 7
- Average comments per issue: 1.25
- Average comments per pull request: 0.03
- Merged pull requests: 26
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 9
- Pull requests: 19
- Average time to close issues: 17 days
- Average time to close pull requests: about 4 hours
- Issue authors: 9
- Pull request authors: 4
- Average comments per issue: 0.56
- Average comments per pull request: 0.0
- Merged pull requests: 14
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- JensRoland (6)
- hhn12138 (3)
- zkx06111 (3)
- kwikiel (2)
- mistoFENG (1)
- mnskim (1)
- alancelestino (1)
- zdaoguang (1)
- thughy (1)
- srmusukula (1)
- john-b-yang (1)
- callmeBalloch (1)
- zhimin-z (1)
- ZCWei51 (1)
- Aoi-cn (1)
Pull Request Authors
- aorwall (28)
- JensRoland (10)
- callmeBalloch (2)
- Aoi-cn (2)
- mnskim (2)
- a-antoniades (2)
- eltociear (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- aiohttp 3.8.5
- aiosignal 1.3.1
- async-timeout 4.0.3
- attrs 23.1.0
- beautifulsoup4 4.12.2
- certifi 2023.7.22
- charset-normalizer 3.2.0
- colorama 0.4.6
- dataclasses-json 0.5.14
- frozenlist 1.4.0
- fsspec 2023.6.0
- greenlet 2.0.2
- idna 3.4
- iniconfig 2.0.0
- langchain 0.0.263
- langsmith 0.0.22
- llama-index 0.7.24.post1
- marshmallow 3.20.1
- multidict 6.0.4
- mypy-extensions 1.0.0
- nest-asyncio 1.5.7
- numexpr 2.8.5
- numpy 1.25.2
- openai 0.27.8
- openapi-schema-pydantic 1.2.4
- packaging 23.1
- pandas 2.0.3
- pluggy 1.2.0
- pydantic 1.10.12
- pyfakefs 5.2.3
- pytest 7.4.0
- python-dateutil 2.8.2
- pytz 2023.3
- pyyaml 6.0.1
- regex 2023.8.8
- requests 2.31.0
- six 1.16.0
- soupsieve 2.4.1
- sqlalchemy 2.0.19
- tenacity 8.2.2
- tiktoken 0.4.0
- tqdm 4.66.1
- tree-sitter 0.20.1
- tree-sitter-languages 1.7.0
- typing-extensions 4.7.1
- typing-inspect 0.9.0
- tzdata 2023.3
- urllib3 1.26.16
- yarl 1.9.2
- pytest ^7.3.1
- python >=3.11,<3.12
- tree-sitter-languages ^1.7.0