matlab-gan

MATLAB implementations of Generative Adversarial Networks -- from GAN to Pixel2Pixel, CycleGAN

https://github.com/zcemycl/matlab-gan

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.5%) to scientific vocabulary

Keywords

aae acgan cgan computer-vision cyclegan dcgan deep-learning deep-neural-networks gans image-generation infogan lsgan matlab matlab-gan matlab-implementations pix2pix
Last synced: 6 months ago · JSON representation

Repository

MATLAB implementations of Generative Adversarial Networks -- from GAN to Pixel2Pixel, CycleGAN

Basic Info
  • Host: GitHub
  • Owner: zcemycl
  • License: mit
  • Language: MATLAB
  • Default Branch: master
  • Homepage:
  • Size: 124 MB
Statistics
  • Stars: 204
  • Watchers: 8
  • Forks: 86
  • Open Issues: 1
  • Releases: 0
Topics
aae acgan cgan computer-vision cyclegan dcgan deep-learning deep-neural-networks gans image-generation infogan lsgan matlab matlab-gan matlab-implementations pix2pix
Created over 6 years ago · Last pushed almost 3 years ago
Metadata Files
Readme License Citation

README.md

Matlab-GAN License: MIT View Matlab-GAN on File Exchange Hits

Collection of MATLAB implementations of Generative Adversarial Networks (GANs) suggested in research papers. This repository is greatly inspired by eriklindernoren's repositories Keras-GAN and PyTorch-GAN, and contains codes to investigate different architectures of GAN models.

Configuration

To run the following codes, users should have the following packages, - MATLAB 2019b - Deep Learning Toolbox - Parallel Computing Toolbox (optional for GPU usage)

Datasets

Table of Contents

Outputs

GAN
-Generator, Discriminator| LSGAN
-Least Squares Loss | DCGAN
-Deep Convolutional Layer | CGAN
-Condition Embedding :-------------------------:|:-------------------------:|:-------------------------:|:-------------------------: ||| ACGAN
-Classification|InfoGAN mnist
-Continuous, Discrete Codes|AAE
-Encoder, Decoder, Discriminator|Pix2Pix
-Pair and Segments checking
-Decovolution and Skip Connections ||| WGAN |SGAN|CycleGAN
-Instance Normalization
-Mutli-agent Learning|InfoGAN CelebA |||

References

  • Y. LeCun and C. Cortes, MNIST handwritten digitdatabase, 2010. [MNIST]
  • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andL. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database, inCVPR09, 2009. [Apple2Orange (ImageNet)]
  • R. Tyleek and R. ra, Spatial pattern templates forrecognition of objects with regular structure, inProc.GCPR, (Saarbrucken, Germany), 2013. [Facade]
  • Z. Liu, P. Luo, X. Wang, and X. Tang, Deep learn-ing face attributes in the wild, inProceedings of In-ternational Conference on Computer Vision (ICCV),December 2015. [CelebA]
  • Goodfellow, Ian J. et al. Generative Adversarial Networks. ArXiv abs/1406.2661 (2014): n. pag. (GAN)
  • Radford, Alec et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015): n. pag. (DCGAN)
  • Denton, Emily L. et al. Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks. ArXiv abs/1611.06430 (2017): n. pag. (CGAN)
  • Odena, Augustus et al. Conditional Image Synthesis with Auxiliary Classifier GANs. ICML (2016). (ACGAN)
  • Chen, Xi et al. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. NIPS (2016). (InfoGAN)
  • Makhzani, Alireza et al. Adversarial Autoencoders. ArXiv abs/1511.05644 (2015): n. pag. (AAE)
  • Isola, Phillip et al. Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016): 5967-5976. (Pix2Pix)
  • J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpairedimage-to-image translation using cycle-consistent ad-versarial networks, 2017. (CycleGAN)
  • Arjovsky, Martn et al. Wasserstein GAN. ArXiv abs/1701.07875 (2017): n. pag. (WGAN)
  • Odena, Augustus. Semi-Supervised Learning with Generative Adversarial Networks. ArXiv abs/1606.01583 (2016): n. pag. (SGAN)

Owner

  • Name: Leo Leung
  • Login: zcemycl
  • Kind: user
  • Location: London

冒険の物語 はじまりは今日でいい いたましいエレジー 誰も謳わぬように prophecy

GitHub Events

Total
  • Watch event: 19
  • Fork event: 2
Last Year
  • Watch event: 19
  • Fork event: 2

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 61
  • Total Committers: 1
  • Avg Commits per committer: 61.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Yui Chun Leung 4****l 61

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 15
  • Total pull requests: 0
  • Average time to close issues: 25 days
  • Average time to close pull requests: N/A
  • Total issue authors: 10
  • Total pull request authors: 0
  • Average comments per issue: 1.67
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • momo-love (3)
  • hurmaeht (3)
  • NicoMigenda (2)
  • chang7ing (1)
  • abhilasha2614 (1)
  • tjr1 (1)
  • ApplePomme (1)
  • prymhdv (1)
  • jlherraiz (1)
  • songport (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels