https://github.com/braindatalab/calibrain

Python framework for uncertainty estimation and calibration in EEG/MEG inverse source imaging.

https://github.com/braindatalab/calibrain

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.2%) to scientific vocabulary

Keywords

brain-source-imaging confidence-intervals eeg forward-modeling inverse-modeling meg mne-python model-calibration neuroimaging probabilistic-models python source-reconstruction uncertainty-estimation
Last synced: 5 months ago · JSON representation

Repository

Python framework for uncertainty estimation and calibration in EEG/MEG inverse source imaging.

Basic Info
Statistics
  • Stars: 3
  • Watchers: 5
  • Forks: 0
  • Open Issues: 0
  • Releases: 3
Topics
brain-source-imaging confidence-intervals eeg forward-modeling inverse-modeling meg mne-python model-calibration neuroimaging probabilistic-models python source-reconstruction uncertainty-estimation
Created 12 months ago · Last pushed 6 months ago
Metadata Files
Readme License

README.rst

.. TODO: Convert this to readme.rst format:

=========
CaliBrain
=========

Uncertainty Calibration in Brain Source Imaging
===============================================

.. image:: docs/source/_static/caliBrain.png
   :alt: CaliBrain Logo
   :width: 25%
   :align: left

.. |commits| image:: https://badgen.net/github/commits/braindatalab/CaliBrain/main
   :target: https://github.com/braindatalab/CaliBrain/commits/main?icon=github&color=green
   :alt: commits

.. |docs-latest| image:: https://readthedocs.org/projects/calibrain/badge/?version=latest
   :target: https://calibrain.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation (latest)

|commits| |docs-latest|

----

Overview
========

**CaliBrain** is a Python framework for uncertainty estimation and calibration in EEG/MEG inverse source imaging.

It supports both:

- **Regression** (continuous source estimates)
- **Classification** (binary activation detection)

**Key Features**:

- Setup of source space, BEM model, forward solution, and leadfield matrices.
- Simulation of source activity and sensor-level measurements with controllable noise and source orientation (fixed or free).
- Solving the inverse problem and reconstructing source time courses.
- Estimation and visualization of confidence intervals.
- Calibration analysis by comparing expected vs. observed confidence levels.

Supported Inverse Methods
--------------------------

- Gamma-MAP
- eLORETA
- Bayesian Minimum Norm

----

Calibration Tasks
=================

1. Regression (Confidence Interval Calibration)
------------------------------------------------

- Check if true simulated source currents fall within predicted confidence intervals.
- Plot calibration curve (Expected vs. Observed coverage).
- Well-calibrated models should follow the diagonal.

2. Classification (Activation Calibration)
-------------------------------------------

- Assess if estimated activation probabilities match true activation frequencies.
- Plot calibration curve for activation detection.
- Ideal calibration follows the diagonal.

----

Main Parameters
===============

- **Estimator**: Gamma-MAP, eLORETA, Bayesian Minimum Norm
- **Orientation**: Fixed or Free
- **Noise Type**: Oracle, Baseline, Cross-Validation, Joint Learning
- **SNR Level (α)**: Control regularization strength
- **Active Sources (nnz)**: Number of nonzero sources

.. image:: docs/images/un-ca-param.jpg
   :alt: un-ca-param
   :width: 75%
   :align: center

----

Outcomes
========

- **Regression Calibration Curves** (confidence intervals)
- **Classification Calibration Curves** (activation probabilities)
- **Quantitative Calibration Metrics**

----

Installation
============

Please see the `Installation Guide `_.

----

Usage
=====

Please see the `Usage Guide `_.

----

Contributing
============

We welcome contributions! Please see `CONTRIBUTING.md `_.

----

License
=======

This project is licensed under the GNU Affero General Public License v3.0. See `LICENSE `_.

----

Citation
========

If you use CaliBrain, please cite relevant works in EEG/MEG source imaging and uncertainty quantification.

Owner

  • Name: QAI Labs
  • Login: braindatalab
  • Kind: organization
  • Location: Berlin, Germany

Quality in Artificial Intelligence Labs Berlin

GitHub Events

Total
  • Issues event: 12
  • Delete event: 5
  • Issue comment event: 1
  • Public event: 1
  • Push event: 49
  • Pull request event: 21
  • Create event: 17
Last Year
  • Issues event: 12
  • Delete event: 5
  • Issue comment event: 1
  • Public event: 1
  • Push event: 49
  • Pull request event: 21
  • Create event: 17

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 7
  • Total pull requests: 13
  • Average time to close issues: 10 days
  • Average time to close pull requests: about 8 hours
  • Total issue authors: 1
  • Total pull request authors: 3
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.08
  • Merged pull requests: 9
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 7
  • Pull requests: 13
  • Average time to close issues: 10 days
  • Average time to close pull requests: about 8 hours
  • Issue authors: 1
  • Pull request authors: 3
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.08
  • Merged pull requests: 9
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • orabe (7)
Pull Request Authors
  • orabe (10)
  • AliHashemi-ai (2)
  • IsmailHuseynov (1)
Top Labels
Issue Labels
simulation (4) enhancement (4) good first issue (2) bug (1) benchmark (1)
Pull Request Labels
enhancement (2) simulation (2)

Dependencies

docs/requirements.txt pypi
  • myst-parser *
  • sphinx >=4.0
  • sphinx-autodoc-typehints *
  • sphinx-rtd-theme *
pyproject.toml pypi
  • POT *
  • mne *
  • nibabel *
  • numpy *
  • pandas *
  • pyyaml *
  • scikit-learn *
requirements.txt pypi
  • POT *
  • mne *
  • nibabel *
  • numpy *
  • pandas *
  • pyyaml *
  • scikit-learn *
.github/workflows/docs.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • peaceiris/actions-gh-pages v3 composite
environment.yml pypi