TransBigData
TransBigData: A Python package for transportation spatio-temporal big data processing, analysis and visualization - Published in JOSS (2022)
Science Score: 93.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 3 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org, zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Keywords from Contributors
Scientific Fields
Repository
A Python package develop for transportation spatio-temporal big data processing, analysis and visualization.
Basic Info
- Host: GitHub
- Owner: ni1o1
- License: bsd-3-clause
- Language: Python
- Default Branch: main
- Homepage: https://transbigdata.readthedocs.io/en/latest/
- Size: 162 MB
Statistics
- Stars: 516
- Watchers: 9
- Forks: 117
- Open Issues: 14
- Releases: 27
Topics
Metadata Files
README-zh_CN.md
TransBigData Python

TransBigDataPythonTransBigDataGPSGPSTransBigData,
TransBigDataGPSODGPSpipTransBigData
TransBigData:
- ****:
- ****:
- ****: GPS
- ****: GPSOD
- ****: keplerglJupyter
- ****: GPS
- ****: matplotlibMapbox
TransBigDataPython>=3.6
pypi
TransBigDatageopandashttps://geopandas.org/index.html
geopandas
pip install -U transbigdata
conda-forge
conda-forge TransBigDataconda
conda install -c conda-forge transbigdata
(keplergl)

(keplergl)

OD(keplergl)

TransBigDataGPS:
```python import transbigdata as tbd import pandas as pd
GPS
data = pd.read_csv('TaxiData-Sample.csv',header = None) data.columns = ['VehicleNum','time','lon','lat','OpenStatus','Speed'] data ```
| VehicleNum | time | lon | lat | OpenStatus | Speed | |
|---|---|---|---|---|---|---|
| 0 | 34745 | 20:27:43 | 113.806847 | 22.623249 | 1 | 27 |
| 1 | 34745 | 20:24:07 | 113.809898 | 22.627399 | 0 | 0 |
| 2 | 34745 | 20:24:27 | 113.809898 | 22.627399 | 0 | 0 |
| 3 | 34745 | 20:22:07 | 113.811348 | 22.628067 | 0 | 0 |
| 4 | 34745 | 20:10:06 | 113.819885 | 22.647800 | 0 | 54 |
| ... | ... | ... | ... | ... | ... | ... |
| 544994 | 28265 | 21:35:13 | 114.321503 | 22.709499 | 0 | 18 |
| 544995 | 28265 | 09:08:02 | 114.322701 | 22.681700 | 0 | 0 |
| 544996 | 28265 | 09:14:31 | 114.336700 | 22.690100 | 0 | 0 |
| 544997 | 28265 | 21:19:12 | 114.352600 | 22.728399 | 0 | 0 |
| 544998 | 28265 | 19:08:06 | 114.137703 | 22.621700 | 0 | 0 |
544999 rows 6 columns
tbd.clean_outofbounds
```python
bounds = [113.75, 22.4, 114.62, 22.86]
data = tbd.clean_outofbounds(data,bounds = bounds,col = ['lon','lat']) ```
GPS TransBigData:
```python
params = tbd.areatoparams(bounds,accuracy = 1000) params ```
{'slon': 113.75, 'slat': 22.4, 'deltalon': 0.00974336289289822, 'deltalat': 0.008993210412845813, 'theta': 0, 'method': 'rect', 'gridsize': 1000}
GPS tbd.GPS_to_grid, LONCOL LATCOL:
```python
GPS
data['LONCOL'],data['LATCOL'] = tbd.GPStogrids(data['lon'],data['lat'],params) ```
```python
gridagg = data.groupby(['LONCOL','LATCOL'])['VehicleNum'].count().resetindex()
gridagg['geometry'] = tbd.grididtopolygon(gridagg['LONCOL'],grid_agg['LATCOL'],params)
GeoDataFrame
import geopandas as gpd gridagg = gpd.GeoDataFrame(gridagg)
gridagg.plot(column = 'VehicleNum',cmap = 'autumnr') ```

&
TransBigData
```python
params['method'] = 'hexa'
: params['method'] = 'tri'
params['theta'] = 5 ```
:
```python
ID
data['loncol1'],data['loncol2'],data['loncol3'] = tbd.GPSto_grid(data['lon'],data['lat'],params)
gridagg = data.groupby(['loncol1','loncol2','loncol3'])['VehicleNum'].count().reset_index()
gridagg['geometry'] = tbd.gridtopolygon([gridagg['loncol1'],gridagg['loncol2'],gridagg['loncol_3']],params)
GeoDataFrame
import geopandas as gpd gridagg = gpd.GeoDataFrame(gridagg)
gridagg.plot(column = 'VehicleNum',cmap = 'autumnr')
```

(matplotlib)
tbd.plot_map tbd.plotscale:
```python import matplotlib.pyplot as plt fig =plt.figure(1,(8,8),dpi=300) ax =plt.subplot(111) plt.sca(ax)
tbd.plot_map(plt,bounds,zoom = 11,style = 4)
cax = plt.axes([0.05, 0.33, 0.02, 0.3]) plt.title('Data count') plt.sca(ax)
gridagg.plot(column = 'VehicleNum',cmap = 'autumnr',ax = ax,cax = cax,legend = True)
tbd.plotscale(ax,bounds = bounds,textsize = 10,compasssize = 1,accuracy = 2000,rect = [0.06,0.03],zorder = 10) plt.axis('off') plt.xlim(bounds[0],bounds[2]) plt.ylim(bounds[1],bounds[3]) plt.show() ```

TransBigData
TransBigData

- b https://space.bilibili.com/3051484
- https://www.lifangshuju.com/#/introduce/166
- https://www.lifangshuju.com/#/introduce/154
- https://www.lifangshuju.com/#/introduce/165
- github https://github.com/ni1o1/transbigdata/
- bug https://github.com/ni1o1/transbigdata/issues
TransBigDataDOICITATION.cff
Owner
- Name: Qing Yu
- Login: ni1o1
- Kind: user
- Location: Shenzhen, China
- Company: Southern University of Science and Technology
- Website: https://ni1o1.github.io/
- Repositories: 37
- Profile: https://github.com/ni1o1
Python, JavaScript, Spatio-temporal big data, Data visualization
JOSS Publication
TransBigData: A Python package for transportation spatio-temporal big data processing, analysis and visualization
Authors
Tags
transportation spatio-temporal data geospatial data GIS data quality analysis data pre-processing data visualization taxi GPS data bus GPS data bike sharing dataGitHub Events
Total
- Issues event: 1
- Watch event: 43
- Fork event: 2
Last Year
- Issues event: 1
- Watch event: 43
- Fork event: 2
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| ni1o1 | 5****1 | 450 |
| 余庆 | y****g@y****l | 127 |
| yuanjian24 | y****u@1****m | 17 |
| James Gaboardi | j****i@g****m | 13 |
| ImgBotApp | I****p@g****m | 2 |
| anitagraser | a****r@g****t | 1 |
| The Gitter Badger | b****r@g****m | 1 |
| Martin Fleischmann | m****n@m****t | 1 |
| Juanjo Bazán | j****n@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 51
- Total pull requests: 49
- Average time to close issues: 14 days
- Average time to close pull requests: 12 days
- Total issue authors: 34
- Total pull request authors: 9
- Average comments per issue: 2.02
- Average comments per pull request: 0.71
- Merged pull requests: 43
- Bot issues: 0
- Bot pull requests: 2
Past Year
- Issues: 3
- Pull requests: 0
- Average time to close issues: 3 days
- Average time to close pull requests: N/A
- Issue authors: 3
- Pull request authors: 0
- Average comments per issue: 0.67
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- jGaboardi (6)
- anitagraser (6)
- xiaosanmeng (3)
- java2python (2)
- ZDAN630 (2)
- youngsteryuan (2)
- ybLin-TJ (2)
- kingsley0107 (2)
- 6287q (1)
- uncle-leeeeee (1)
- zhang6066 (1)
- a28927 (1)
- InEase (1)
- zhaohao007 (1)
- liq77 (1)
Pull Request Authors
- ni1o1 (32)
- jGaboardi (8)
- mbalatsko (2)
- imgbot[bot] (2)
- anitagraser (1)
- martinfleis (1)
- InEase (1)
- xuanxu (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 1,398 last-month
-
Total dependent packages: 1
(may contain duplicates) -
Total dependent repositories: 3
(may contain duplicates) - Total versions: 96
- Total maintainers: 1
pypi.org: transbigdata
A Python package developed for transportation spatio-temporal big data processing and analysis.
- Homepage: https://github.com/ni1o1/transbigdata
- Documentation: https://transbigdata.readthedocs.io/
- License: BSD
-
Latest release: 0.5.3
published about 2 years ago
Rankings
Maintainers (1)
conda-forge.org: transbigdata
- Homepage: https://github.com/ni1o1/transbigdata
- License: BSD-3-Clause
-
Latest release: 0.4.16
published about 3 years ago
Rankings
Dependencies
- actions/checkout v3 composite
- actions/setup-python v3 composite
- pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- codecov/codecov-action v2 composite
- geopandas *
- igraph *
- ipython *
- keplergl *
- matplotlib *
- nbsphinx *
- networkx *
- numpydoc *
- rtree *
- scikit-opt *
- scipy *
- seaborn *
- sphinx *
- sphinx_gallery *
- numpy *
