TorchMetrics - Measuring Reproducibility in PyTorch

TorchMetrics - Measuring Reproducibility in PyTorch - Published in JOSS (2022)

https://github.com/Lightning-AI/torchmetrics

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
    7 of 282 committers (2.5%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.5%) to scientific vocabulary

Keywords

analyses data-science deep-learning machine-learning metrics python pytorch

Keywords from Contributors

exoplanet energy-system hydrology mesh neural-style-transfer optimade-python optimade-specification interpretability agent-based-modeling agent-based-simulation

Scientific Fields

Mathematics Computer Science - 63% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Machine learning metrics for distributed, scalable PyTorch applications.

Basic Info
Statistics
  • Stars: 2,328
  • Watchers: 33
  • Forks: 455
  • Open Issues: 81
  • Releases: 65
Topics
analyses data-science deep-learning machine-learning metrics python pytorch
Created about 5 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Codeowners

README.md

**Machine learning metrics for distributed, scalable PyTorch applications.** ______________________________________________________________________

What is TorchmetricsImplementing a metricBuilt-in metricsDocsCommunityLicense

______________________________________________________________________ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/torchmetrics)](https://pypi.org/project/torchmetrics/) [![PyPI Status](https://badge.fury.io/py/torchmetrics.svg)](https://badge.fury.io/py/torchmetrics) [![PyPI - Downloads](https://img.shields.io/pypi/dm/torchmetrics) ](https://pepy.tech/project/torchmetrics) [![Conda](https://img.shields.io/conda/v/conda-forge/torchmetrics?label=conda&color=success)](https://anaconda.org/conda-forge/torchmetrics) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/torchmetrics/blob/master/LICENSE) [![CI testing | CPU](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml/badge.svg?event=push)](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml) [![Build Status](https://dev.azure.com/Lightning-AI/Metrics/_apis/build/status%2FTM.unittests?branchName=master)](https://dev.azure.com/Lightning-AI/Metrics/_build/latest?definitionId=54&branchName=master) [![codecov](https://codecov.io/gh/Lightning-AI/torchmetrics/branch/master/graph/badge.svg?token=NER6LPI3HS)](https://codecov.io/gh/Lightning-AI/torchmetrics) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-AI/torchmetrics/master.svg)](https://results.pre-commit.ci/latest/github/Lightning-AI/torchmetrics/master) [![Documentation Status](https://readthedocs.org/projects/torchmetrics/badge/?version=latest)](https://torchmetrics.readthedocs.io/en/latest/?badge=latest) [![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5844769.svg)](https://doi.org/10.5281/zenodo.5844769) [![JOSS status](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43/status.svg)](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43) ______________________________________________________________________

Installation

Simple installation from PyPI

bash pip install torchmetrics

Other installations Install using conda ```bash conda install -c conda-forge torchmetrics ``` Install using uv ```bash uv add torchmetrics ``` Pip from source ```bash # with git pip install git+https://github.com/Lightning-AI/torchmetrics.git@release/stable ``` Pip from archive ```bash pip install https://github.com/Lightning-AI/torchmetrics/archive/refs/heads/release/stable.zip ``` Extra dependencies for specialized metrics: ```bash pip install torchmetrics[audio] pip install torchmetrics[image] pip install torchmetrics[text] pip install torchmetrics[all] # install all of the above ``` Install latest developer version ```bash pip install https://github.com/Lightning-AI/torchmetrics/archive/master.zip ```

What is TorchMetrics

TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:

  • A standardized interface to increase reproducibility
  • Reduces boilerplate
  • Automatic accumulation over batches
  • Metrics optimized for distributed-training
  • Automatic synchronization between multiple devices

You can use TorchMetrics with any PyTorch model or with PyTorch Lightning to enjoy additional features such as:

  • Module metrics are automatically placed on the correct device.
  • Native support for logging metrics in Lightning to reduce even more boilerplate.

Using TorchMetrics

Module metrics

The module-based metrics contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices!

  • Automatic accumulation over multiple batches
  • Automatic synchronization between multiple devices
  • Metric arithmetic

This can be run on CPU, single GPU or multi-GPUs!

For the single GPU/CPU case:

```python import torch

import our library

import torchmetrics

initialize metric

metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5)

move the metric to device you want computations to take place

device = "cuda" if torch.cuda.is_available() else "cpu" metric.to(device)

nbatches = 10 for i in range(nbatches): # simulate a classification problem preds = torch.randn(10, 5).softmax(dim=-1).to(device) target = torch.randint(5, (10,)).to(device)

# metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")

metric on all batches using custom accumulation

acc = metric.compute() print(f"Accuracy on all data: {acc}") ```

Module metric usage remains the same when using multiple GPUs or multiple nodes.

Example using DDP ```python import os import torch import torch.distributed as dist import torch.multiprocessing as mp from torch import nn from torch.nn.parallel import DistributedDataParallel as DDP import torchmetrics def metric_ddp(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" # create default process group dist.init_process_group("gloo", rank=rank, world_size=world_size) # initialize model metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5) # define a model and append your metric to it # this allows metric states to be placed on correct accelerators when # .to(device) is called on the model model = nn.Linear(10, 10) model.metric = metric model = model.to(rank) # initialize DDP model = DDP(model, device_ids=[rank]) n_epochs = 5 # this shows iteration over multiple training epochs for n in range(n_epochs): # this will be replaced by a DataLoader with a DistributedSampler n_batches = 10 for i in range(n_batches): # simulate a classification problem preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,)) # metric on current batch acc = metric(preds, target) if rank == 0: # print only for rank 0 print(f"Accuracy on batch {i}: {acc}") # metric on all batches and all accelerators using custom accumulation # accuracy is same across both accelerators acc = metric.compute() print(f"Accuracy on all data: {acc}, accelerator rank: {rank}") # Resetting internal state such that metric ready for new data metric.reset() # cleanup dist.destroy_process_group() if __name__ == "__main__": world_size = 2 # number of gpus to parallelize over mp.spawn(metric_ddp, args=(world_size,), nprocs=world_size, join=True) ```

Implementing your own Module metric

Implementing your own metric is as easy as subclassing an torch.nn.Module. Simply, subclass torchmetrics.Metric and just implement the update and compute methods:

```python import torch from torchmetrics import Metric

class MyAccuracy(Metric): def init(self): # remember to call super super().init() # call self.add_statefor every internal state that is needed for the metrics computations # distreducefx indicates the function that should be used to reduce # state from multiple processes self.addstate("correct", default=torch.tensor(0), distreducefx="sum") self.addstate("total", default=torch.tensor(0), distreducefx="sum")

def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:
    # extract predicted class index for computing accuracy
    preds = preds.argmax(dim=-1)
    assert preds.shape == target.shape
    # update metric states
    self.correct += torch.sum(preds == target)
    self.total += target.numel()

def compute(self) -> torch.Tensor:
    # compute final result
    return self.correct.float() / self.total

my_metric = MyAccuracy() preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,))

print(my_metric(preds, target)) ```

Functional metrics

Similar to torch.nn, most metrics have both a module-based and functional version. The functional versions are simple python functions that as input take torch.tensors and return the corresponding metric as a torch.tensor.

```python import torch

import our library

import torchmetrics

simulate a classification problem

preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,))

acc = torchmetrics.functional.classification.multiclassaccuracy( preds, target, numclasses=5 ) ```

Covered domains and example metrics

In total TorchMetrics contains 100+ metrics, which covers the following domains:

  • Audio
  • Classification
  • Detection
  • Information Retrieval
  • Image
  • Multimodal (Image-Text-3D Talking Heads)
  • Nominal
  • Regression
  • Segmentation
  • Text

Each domain may require some additional dependencies which can be installed with pip install torchmetrics[audio], pip install torchmetrics['image'] etc.

Additional features

Plotting

Visualization of metrics can be important to help understand what is going on with your machine learning algorithms. Torchmetrics have built-in plotting support (install dependencies with pip install torchmetrics[visual]) for nearly all modular metrics through the .plot method. Simply call the method to get a simple visualization of any metric!

```python import torch from torchmetrics.classification import MulticlassAccuracy, MulticlassConfusionMatrix

num_classes = 3

this will generate two distributions that comes more similar as iterations increase

w = torch.randn(num_classes) target = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True) preds = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True)

acc = MulticlassAccuracy(numclasses=numclasses, average="micro") accperclass = MulticlassAccuracy(numclasses=numclasses, average=None) confmat = MulticlassConfusionMatrix(numclasses=numclasses)

plot single value

for i in range(5): accperclass.update(preds(i), target(i)) confmat.update(preds(i), target(i)) fig1, ax1 = accperclass.plot() fig2, ax2 = confmat.plot()

plot multiple values

values = [] for i in range(10): values.append(acc(preds(i), target(i))) fig3, ax3 = acc.plot(values) ```

For examples of plotting different metrics try running this example file.

Contribute!

The lightning + TorchMetrics team is hard at work adding even more metrics. But we're looking for incredible contributors like you to submit new metrics and improve existing ones!

Join our Discord to get help with becoming a contributor!

Community

For help or questions, join our huge community on Discord!

Citation

We’re excited to continue the strong legacy of open source software and have been inspired over the years by Caffe, Theano, Keras, PyTorch, torchbearer, ignite, sklearn and fast.ai.

If you want to cite this framework feel free to use GitHub's built-in citation option to generate a bibtex or APA-Style citation based on this file (but only if you loved it 😊).

License

Please observe the Apache 2.0 license that is listed in this repository. In addition, the Lightning framework is Patent Pending.

Owner

  • Name: ⚡️ Lightning AI
  • Login: Lightning-AI
  • Kind: organization
  • Location: United States of America

Turn ideas into AI, Lightning fast. Creators of PyTorch Lightning, Lightning AI Studio, TorchMetrics, Fabric, Lit-GPT, Lit-LLaMA

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you want to cite the framework, feel free to use this (but only if you loved it 😊)"
title: "TorchMetrics - Measuring Reproducibility in PyTorch"
abstract:
  "A main problem with reproducing machine learning publications is the variance of metric implementations across papers.
  A lack of standardization leads to different behavior in mech- anisms such as checkpointing, learning rate schedulers or early stopping, that will influence the reported results.
  For example, a complex metric such as Fréchet inception distance (FID) for synthetic image quality evaluation will differ based on the specific interpolation method used.
  There have been a few attempts at tackling the reproducibility issues.
  Papers With Code links research code with its corresponding paper. Similarly, arXiv recently added a code and data section that links both official and community code to papers.
  However, these methods rely on the paper code to be made publicly accessible which is not always possible.
  Our approach is to provide the de-facto reference implementation for metrics.
  This approach enables proprietary work to still be comparable as long as they’ve used our reference implementations.
  We introduce TorchMetrics, a general-purpose metrics package that covers a wide variety of tasks and domains used in the machine learning community.
  TorchMetrics provides standard classification and regression metrics; and domain-specific metrics for audio, computer vision, natural language processing, and information retrieval.
  Our process for adding a new metric is as follows, first we integrate a well-tested and established third-party library.
  Once we’ve verified the implementations and written tests for them, we re-implement them in native PyTorch to enable hardware acceleration and remove any bottlenecks in inter-device transfer."
authors:
  - name: Nicki Skafte Detlefsen
    orcid: "https://orcid.org/0000-0002-8133-682X"
  - name: Jiri Borovec
    orcid: "https://orcid.org/0000-0001-7437-824X"
  - name: Justus Schock
    orcid: "https://orcid.org/0000-0003-0512-3053"
  - name: Ananya Harsh
  - name: Teddy Koker
  - name: Luca Di Liello
  - name: Daniel Stancl
  - name: Changsheng Quan
  - name: Maxim Grechkin
  - name: William Falcon

doi: 10.21105/joss.04101
license: "Apache-2.0"
url: "https://www.pytorchlightning.ai"
repository-code: "https://github.com/Lightning-AI/torchmetrics"
date-released: 2022-02-11
keywords:
  - machine learning
  - deep learning
  - artificial intelligence
  - metrics
  - pytorch

GitHub Events

Total
  • Create event: 225
  • Release event: 14
  • Issues event: 165
  • Watch event: 200
  • Delete event: 195
  • Issue comment event: 790
  • Push event: 1,059
  • Pull request review event: 564
  • Pull request review comment event: 304
  • Pull request event: 544
  • Fork event: 57
Last Year
  • Create event: 225
  • Release event: 14
  • Issues event: 165
  • Watch event: 200
  • Delete event: 195
  • Issue comment event: 790
  • Push event: 1,060
  • Pull request review event: 564
  • Pull request review comment event: 304
  • Pull request event: 544
  • Fork event: 57

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 2,245
  • Total Committers: 282
  • Avg Commits per committer: 7.961
  • Development Distribution Score (DDS): 0.686
Past Year
  • Commits: 369
  • Committers: 45
  • Avg Commits per committer: 8.2
  • Development Distribution Score (DDS): 0.629
Top Committers
Name Email Commits
Jirka j****c@s****z 705
Nicki Skafte Detlefsen s****i@g****m 490
dependabot[bot] 4****] 383
Daniel Stancl 4****d 47
Rittik Panda r****4@g****m 27
Changsheng Quan q****s@q****m 22
pre-commit-ci[bot] 6****] 20
Justus Schock 1****k 18
Bas Krahmer b****r@g****m 15
Luca Di Liello l****o@u****t 15
Shion Matsumoto s****7@g****m 14
Maxim Grechkin m****2@g****m 13
deepsource-autofix[bot] 6****] 13
Santiago Castro s****o@u****u 12
Akihiro Nitta n****a@a****m 10
Reagan Lee 9****e 9
William Falcon w****7@c****u 9
Ethan Harris e****s@g****m 8
Adam J. Stewart a****6@g****m 8
Irakli Salia 6****0 8
Teddy Koker t****r@g****m 8
Ashutosh Kumar a****1@g****m 7
Tobias Kupek t****k 7
edenlightning 6****g 7
thomas chaton t****s@g****i 7
Rohit Gupta r****8@g****m 6
Tadej Svetina t****a@g****m 6
twsl 4****l 6
Adrian Wälchli a****i@g****m 6
Valérian Rey 3****y 5
and 252 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 441
  • Total pull requests: 1,504
  • Average time to close issues: 2 months
  • Average time to close pull requests: 15 days
  • Total issue authors: 338
  • Total pull request authors: 114
  • Average comments per issue: 2.82
  • Average comments per pull request: 1.59
  • Merged pull requests: 1,169
  • Bot issues: 3
  • Bot pull requests: 626
Past Year
  • Issues: 118
  • Pull requests: 669
  • Average time to close issues: 19 days
  • Average time to close pull requests: 6 days
  • Issue authors: 97
  • Pull request authors: 51
  • Average comments per issue: 1.25
  • Average comments per pull request: 1.39
  • Merged pull requests: 478
  • Bot issues: 1
  • Bot pull requests: 290
Top Authors
Issue Authors
  • Borda (12)
  • stancld (10)
  • ValerianRey (5)
  • Yann-CV (5)
  • nkaenzig (5)
  • robmarkcole (5)
  • rittik9 (4)
  • michael080808 (4)
  • OmerShubi (4)
  • awaelchli (4)
  • SkafteNicki (4)
  • donglihe-hub (4)
  • Queuecumber (4)
  • gratus907 (3)
  • ashinkajay (3)
Pull Request Authors
  • dependabot[bot] (613)
  • Borda (297)
  • SkafteNicki (233)
  • rittik9 (67)
  • baskrahmer (31)
  • matsumotosan (17)
  • Isalia20 (16)
  • pre-commit-ci[bot] (13)
  • adamjstewart (10)
  • stancld (8)
  • quancs (7)
  • martin-kokos (6)
  • i-aki-y (6)
  • gratus907 (5)
  • nkaenzig (4)
Top Labels
Issue Labels
help wanted (262) bug / fix (246) enhancement (136) topic: Image (36) v1.2.x (34) New metric (34) documentation (26) question (23) v1.3.x (19) v1.4.x (16) good first issue (16) v0.11.x (16) v1.1.x (12) waiting on author (12) topic: Audio (11) v0.9.x (9) topic: Text (8) v1.6.x (8) v1.0.x (7) refactoring (7) v0.8.x (6) test / CI (6) Important (5) v0.10.x (5) Priority (5) working as intended (5) v1.7.x (5) v0.3.x (3) API / design (3) wontfix (3)
Pull Request Labels
test / CI (704) ready (555) 0:] Ready-To-Go (303) documentation (190) bug / fix (178) topic: Classif (127) enhancement (126) topic: Image (112) topic: Detect (83) topic: Text (74) topic: Regress (67) topic: Audio (55) New metric (54) topic: MModal (38) topic: Cluster (35) Priority (29) topic: Retrieval (27) refactoring (24) topic: Nominal (13) has conflicts (9) waiting on author (7) Important (6) API / design (2) help wanted (1) v1.2.x (1) v1.5.x (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 9,347,314 last-month
  • Total docker downloads: 26,112,751
  • Total dependent packages: 340
  • Total dependent repositories: 7,449
  • Total versions: 72
  • Total maintainers: 3
pypi.org: torchmetrics

PyTorch native Metrics

  • Versions: 72
  • Dependent Packages: 340
  • Dependent Repositories: 7,449
  • Downloads: 9,347,314 Last month
  • Docker Downloads: 26,112,751
Rankings
Dependent packages count: 0.1%
Dependent repos count: 0.1%
Downloads: 0.1%
Docker downloads count: 0.6%
Average: 0.9%
Stargazers count: 1.7%
Forks count: 2.8%
Maintainers (3)
Last synced: 4 months ago

Dependencies

.github/actions/unittesting/action.yml actions
  • actions/upload-artifact v2 composite
.github/workflows/ci-integrate.yml actions
  • ./.github/actions/caching * composite
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/focus-diff.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/greetings.yml actions
  • actions/first-interaction v1 composite
.devcontainer/Dockerfile docker
  • mcr.microsoft.com/vscode/devcontainers/python ${VARIANT} build
requirements/audio.txt pypi
  • pystoi *
requirements/audio_test.txt pypi
  • fast-bss-eval >=0.1.0 test
  • mir_eval >=0.6 test
  • pypesq >1.2 test
  • torch_complex * test
requirements/classification_test.txt pypi
  • netcal * test
requirements/detection.txt pypi
  • pycocotools *
  • torchvision >=0.8
requirements/detection_test.txt pypi
  • pycocotools * test
requirements/docs.txt pypi
  • docutils >=0.16
  • myst-parser *
  • nbsphinx >=0.8
  • pandoc >=1.0
  • pt-lightning-sphinx-theme *
  • sphinx >=4.0,<5.0
  • sphinx-autodoc-typehints >=1.0
  • sphinx-copybutton >=0.3
  • sphinx-paramlinks >=0.5.1
  • sphinx-togglebutton >=0.2
  • sphinxcontrib-fulltoc >=1.0
  • sphinxcontrib-mockautodoc *
requirements/doctest.txt pypi
  • pytest * test
  • pytest-doctestplus * test
  • pytest-rerunfailures * test
requirements/image.txt pypi
  • lpips *
  • scipy *
  • torch-fidelity *
  • torchvision *
requirements/image_test.txt pypi
  • kornia >=0.6.7 test
  • pytorch-msssim ==0.2.1 test
  • scikit-image >0.17.1 test
requirements/integrate.txt pypi
  • pytorch-lightning >=1.5
requirements/multimodal.txt pypi
  • transformers >=4.10.0
requirements/nominal_test.txt pypi
  • dython * test
  • pandas * test
  • scipy * test
requirements/test.txt pypi
  • check-manifest * test
  • cloudpickle >=1.3 test
  • coverage >5.2 test
  • fire * test
  • mypy ==0.982 test
  • phmdoctest >=1.1.1 test
  • pre-commit >=1.0 test
  • psutil * test
  • pytest ==6. test
  • pytest-cov >2.10 test
  • pytest-doctestplus >=0.9.0 test
  • pytest-rerunfailures >=10.0 test
  • pytest-timeout * test
  • requests * test
  • scikit-learn >1.0,<1.1.1 test
  • types-PyYAML * test
  • types-emoji * test
  • types-protobuf * test
  • types-requests * test
  • types-setuptools * test
  • types-six * test
  • types-tabulate * test
requirements/text.txt pypi
  • nltk >=3.6
  • regex >=2021.9.24
  • tqdm >=4.41.0
requirements/text_test.txt pypi
  • bert_score ==0.3.10 test
  • huggingface-hub <0.7 test
  • jiwer >=2.3.0 test
  • rouge-score >=0.0.4 test
  • sacrebleu >=2.0.0 test
  • transformers >4.4.0 test
requirements/visual.txt pypi
  • matplotlib >=3.2.0
requirements.txt pypi
  • lightning-utilities >=0.4.1
  • numpy >=1.17.2
  • packaging *
  • torch >=1.8.1
  • typing-extensions *
.github/actions/pull-caches/action.yml actions
  • actions/cache/restore v3 composite
.github/actions/push-caches/action.yml actions
  • actions/cache/restore v3 composite
  • actions/cache/save v3 composite
.github/workflows/ci-checks.yml actions
.github/workflows/clear-cache.yml actions
.github/workflows/docs-build.yml actions
  • ./.github/actions/pull-caches * composite
  • ./.github/actions/push-caches * composite
  • actions/cache v3 composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • google-github-actions/auth v1 composite
  • google-github-actions/setup-gcloud v1 composite
pyproject.toml pypi
requirements/devel.txt pypi
requirements/typing.txt pypi
  • mypy ==1.4.1
  • types-PyYAML *
  • types-emoji *
  • types-protobuf *
  • types-requests *
  • types-setuptools *
  • types-six *
  • types-tabulate *
setup.py pypi
.github/workflows/ci-rtfd.yml actions
  • readthedocs/actions/preview v1 composite
.github/workflows/ci-tests.yml actions
  • ./.github/actions/pull-caches * composite
  • ./.github/actions/push-caches * composite
  • ./.github/actions/unittesting * composite
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/docker-build.yml actions
  • actions/checkout v3 composite
  • docker/build-push-action v4 composite
  • docker/login-action v2 composite
.github/workflows/labeler.yml actions
  • actions/checkout v3 composite
  • actions/labeler v4 composite
.github/workflows/publish-pkg.yml actions
  • AButler/upload-release-assets v2.0 composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • juliangruber/sleep-action v1 composite
  • pypa/gh-action-pypi-publish v1.8.10 composite