https://github.com/brsynth/icfree-ml
Design of experiments (DoE) and machine learning packages for the iCFree project
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.7%) to scientific vocabulary
Keywords
Repository
Design of experiments (DoE) and machine learning packages for the iCFree project
Basic Info
Statistics
- Stars: 5
- Watchers: 0
- Forks: 2
- Open Issues: 0
- Releases: 24
Topics
Metadata Files
README.md
iCFree
iCFree is a Python-based program designed to automate the process of generating and running a Snakemake workflow for sampling and preparing instructions for laboratory experiments. The program includes components for generating samples, creating plates, and instructing the handling of these plates.
Table of Contents
Installation
Install Conda:
- Download the installer for your operating system from the Conda Installation page.
- Follow the instructions on the page to install Conda. For example, on Windows, you would download the installer and run it. On macOS and Linux, you might use a command like:
bash bash ~/Downloads/Miniconda3-latest-Linux-x86_64.sh - Follow the prompts on the installer to complete the installation.
Install iCFree from conda-forge:
bash conda install -c conda-forge icfree
Usage
The main entry point of the program is the __main__.py file. You can run the program from the command line by providing the necessary arguments for each step of the workflow.
Basic Command
bash
python -m icfree --sampler_input_filename <input_file> --sampler_nb_samples <number_of_samples> --sampler_seed <seed> --sampler_output_filename <output_file> --plate_designer_input_filename <input_file> --plate_designer_sample_volume <volume> --plate_designer_default_dead_volume <dead_volume> --plate_designer_num_replicates <replicates> --plate_designer_well_capacity <capacity> --plate_designer_start_well_src_plt <start_well_src> --plate_designer_start_well_dst_plt <start_well_dst> --plate_generat...
Components
Sampler
The sampler.py script generates Latin Hypercube Samples (LHS) for given components.
Usage
bash
python icfree/sampler.py <input_file> <output_file> <num_samples> [--step <step_size>] [--seed <seed>]
Arguments
- input_file: Input file path with components and their max values.
- output_file: Output CSV file path for the samples.
- num_samples: Number of samples to generate.
- --step: Step size for creating discrete ranges (default: 2.5).
- --seed: Seed for random number generation for reproducibility (optional).
Plate Designer
The plate_designer.py script generates plates based on the sampled data.
Usage
bash
python icfree/plate_designer.py <input_file> <sample_volume> [options]
Options
- --defaultdeadvolume: Default dead volume.
- --dead_volumes: Dead volumes for specific wells.
- --num_replicates: Number of replicates.
- --well_capacity: Well capacity.
- --startwellsrc_plt: Starting well for the source plate.
- --startwelldst_plt: Starting well for the destination plate.
- --extra_wells: Extra wells to add to the plate.
- --output_folder: Folder to save the output files.
Instructor
The instructor.py script generates instructions for handling the generated plates.
Usage
bash
python icfree/instructor.py <source_plate> <destination_plate> <output_instructions> [options]
Options
- --maxtransfervolume: Maximum transfer volume.
- --split_threshold: Threshold for splitting components.
- --sourceplatetype: Type of the source plate.
- --split_components: Components to split.
- --dispense_order: Comma-separated list of component names specifying the dispensing order.
Learner
The Learner module carries out an active learning process to both train the model and explore the space of possible cell-free combinations.
Usage
bash
python -m icfree.learner <data_folder> <parameter_file> <output_folder> [options]
Options
- --name_list: a comma-separated string of column names or identifiers, converted to a list of strings representing columns that contain labels (y). This separates y columns from the rest (X features). (Default: Yield1,Yield2,Yield3,Yield4,Yield5)
- --test: a flag for validating the model; not required to run inside the active learning loop. If not set, skip the validating step.
- --nbrep NBREP: the number of test repetitions for validating the model behavior. 80% of data is randomly separated for training, and 20% is used for testing. (Default: 100)
- --flatten: a flag to indicate whether to flatten Y data. If set, treats each repetition in the same experiment independently; multiple same X values with different y outputs are modeled. Else, calculates the average of y across repetitions and only model with y average.
- --seed SEED: the random seed value used for reproducibility in random operations. (Default: 85)
- --nbnewdata_predict: The number of new data points sampled from all possible cases. (Default: 1000)
- --nbnewdata: The number of new data points selected from the generated ones. These are the data points labeled after active learning loops.
nb_new_data_predictmust be greater thannb_new_datato be meaningful. (Default: 50) - --parameterstep: The step size used to decrement the maximum predefined concentration sequentially. For example, if the maximum concentration is
max, the sequence of concentrations is calculated as: `max - 1 * parameterstep,max - 2 * parameterstep,max - 3 * parameterstep`, and so on. Each concentration is a candidate for experimental testing. Smaller steps result in more possible combinations to sample. (Default: 10) - --n_group: parameter for the cluster margin algorithm, specifying the number of groups into which generated data will be clustered. (Default: 15)
- --km: parameter for the cluster margin algorithm, specifying the number of data points for the first selection. Ensure
nb_new_data_predict > ks > km. (Default: 50) - --ks: parameter for the cluster margin algorithm, specifying the number of data points for the second selection. This is also similar to
nb_new_data. (Default: 20) - --plot: a flag to indicate whether to generate all plots for analysis visualization.
- --save_plot: a flag to indicate whether to save all generated plots.
- --verbose: flag to indicate whether to print all messages to the console.
Example
Here is an example of how to run the program with sample data:
bash
python -m icfree --sampler_input_filename data/components.csv --sampler_nb_samples 100 --sampler_seed 42 --sampler_output_filename results/samples.csv --plate_designer_input_filename results/samples.csv --plate_designer_sample_volume 10 --plate_designer_default_dead_volume 2 --plate_designer_num_replicates 3 --plate_designer_well_capacity 200 --plate_designer_start_well_src_plt A1 --plate_designer_start_well_dst_plt B1 --plate_designer_output_folder results/plates --instructor_max_transfer_volume...
License
This project is licensed under the MIT License. See the LICENSE file for details.
Authors
ChatGPT, OpenAI
Owner
- Name: BioRetroSynth
- Login: brsynth
- Kind: organization
- Website: http://www.jfaulon.com
- Repositories: 33
- Profile: https://github.com/brsynth
Our group is interested in synthetic biology and systems metabolic engineering in whole-cell and cell-free systems.
GitHub Events
Total
- Create event: 7
- Issues event: 4
- Release event: 7
- Watch event: 1
- Issue comment event: 4
- Push event: 44
- Pull request event: 2
Last Year
- Create event: 7
- Issues event: 4
- Release event: 7
- Watch event: 1
- Issue comment event: 4
- Push event: 44
- Pull request event: 2
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 2
- Total pull requests: 1
- Average time to close issues: 5 days
- Average time to close pull requests: N/A
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 2.0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 2
- Pull requests: 1
- Average time to close issues: 5 days
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 1
- Average comments per issue: 2.0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- Mostafa-Mahdy (2)
- guillaume-gricourt (1)
Pull Request Authors
- tduigou (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/checkout v3 composite
- actions/setup-python v3 composite
- actions/checkout v2 composite
- actions/create-release v1 composite
- actions/download-artifact v2 composite
- actions/upload-artifact v2 composite
- ad-m/github-push-action master composite
- conda-incubator/setup-miniconda v2 composite
- mathieudutour/github-tag-action v5.6 composite
- ruby/setup-ruby v1 composite
- actions/checkout v3 composite
- conda-incubator/setup-miniconda v2 composite