Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
1 of 5 committers (20.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.1%) to scientific vocabulary
Keywords
computer-vision
gabor-filters
neuroscience
spatiotemporal-energy-model
video-features
Keywords from Contributors
cloud-storage
google-drive
numpy-arrays
Last synced: 6 months ago
·
JSON representation
·
Repository
Motion energy features from video
Basic Info
- Host: GitHub
- Owner: gallantlab
- License: bsd-2-clause
- Language: Python
- Default Branch: main
- Homepage: https://gallantlab.github.io/pymoten/
- Size: 11.6 MB
Statistics
- Stars: 33
- Watchers: 19
- Forks: 10
- Open Issues: 7
- Releases: 7
Topics
computer-vision
gabor-filters
neuroscience
spatiotemporal-energy-model
video-features
Created about 6 years ago
· Last pushed 12 months ago
Metadata Files
Readme
License
Citation
README.rst
=====================
Welcome to pymoten!
=====================
|Zenodo| |Github| |codecov| |Python|
What is pymoten?
================
``pymoten`` is a python package that provides a convenient way to extract motion energy
features from video using a pyramid of spatio-temporal Gabor filters [1]_ [2]_. The filters
are created at multiple spatial and temporal frequencies, directions of motion,
x-y positions, and sizes. Each filter quadrature-pair is convolved with the
video and their activation energy is computed for each frame. These features
provide a good basis to model brain responses to natural movies
[3]_ [4]_.
Installation
============
Clone the repo from GitHub and do the usual python install
.. code-block:: bash
git clone https://github.com/gallantlab/pymoten.git
cd pymoten
sudo python setup.py install
Or with pip:
.. code-block:: bash
pip install pymoten
Getting started
===============
Example using synthetic data
.. code-block:: python
import moten
import numpy as np
# Generate synthetic data
nimages, vdim, hdim = (100, 90, 180)
noise_movie = np.random.randn(nimages, vdim, hdim)
# Create a pyramid of spatio-temporal gabor filters
pyramid = moten.get_default_pyramid(vhsize=(vdim, hdim), fps=24)
# Compute motion energy features
moten_features = pyramid.project_stimulus(noise_movie)
Simple example using a video file
.. code-block:: python
import moten
# Stream and convert the RGB video into a sequence of luminance images
video_file = 'http://anwarnunez.github.io/downloads/avsnr150s24fps_tiny.mp4'
luminance_images = moten.io.video2luminance(video_file, nimages=100)
# Create a pyramid of spatio-temporal gabor filters
nimages, vdim, hdim = luminance_images.shape
pyramid = moten.get_default_pyramid(vhsize=(vdim, hdim), fps=24)
# Compute motion energy features
moten_features = pyramid.project_stimulus(luminance_images)
.. |Build Status| image:: https://travis-ci.org/gallantlab/pymoten.svg?branch=main
:target: https://travis-ci.org/gallantlab/pymoten
.. |Github| image:: https://img.shields.io/badge/github-pymoten-blue
:target: https://github.com/gallantlab/pymoten
.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue
:target: https://www.python.org/downloads/release/python-370
.. |Codecov| image:: https://codecov.io/gh/gallantlab/pymoten/branch/main/graph/badge.svg
:target: https://codecov.io/gh/gallantlab/pymoten
.. |Zenodo| image:: https://zenodo.org/badge/240954590.svg
:target: https://zenodo.org/badge/latestdoi/240954590
Cite as
=======
Nunez-Elizalde AO, Deniz F, Dupré la Tour T, Visconti di Oleggio Castello M, and Gallant JL (2021). pymoten: scientific python package for computing motion energy features from video. Zenodo. https://doi.org/10.5281/zenodo.6349625
References
==========
.. [1] Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion.
Journal of the Optical Society of America A, 2(2), 284-299.
.. [2] Watson, A. B., & Ahumada, A. J. (1985). Model of human visual-motion sensing.
Journal of the Optical Society of America A, 2(2), 322–342.
.. [3] Nishimoto, S., & Gallant, J. L. (2011). A three-dimensional
spatiotemporal receptive field model explains responses of area MT neurons
to naturalistic movies. Journal of Neuroscience, 31(41), 14551-14564.
.. [4] Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., &
Gallant, J. L. (2011). Reconstructing visual experiences from brain activity
evoked by natural movies. Current Biology, 21(19), 1641-1646.
=======
A MATLAB implementation can be found `here `_.
Owner
- Name: gallantlab
- Login: gallantlab
- Kind: organization
- Repositories: 26
- Profile: https://github.com/gallantlab
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." title: 'pymoten: scientific python package for computing motion energy features from video' tags: - computer vision - motion energy - video processing authors: - given-names: Anwar O. family-names: Nunez-Elizalde affiliation: Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA - given-names: Fatma family-names: Deniz affiliation: Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA - given-names: Tom family-names: Dupré la Tour affiliation: Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA - given-names: Matteo family-names: Visconti di Oleggio Castello affiliation: Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA - given-names: Jack L. family-names: Gallant affiliation: Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA doi: 10.5281/zenodo.6349625 date-released: 2021-01-01 url: "https://github.com/gallantlab/pymoten"
GitHub Events
Total
- Watch event: 5
- Delete event: 5
- Issue comment event: 2
- Push event: 5
- Pull request event: 14
- Fork event: 2
- Create event: 5
Last Year
- Watch event: 5
- Delete event: 5
- Issue comment event: 2
- Push event: 5
- Pull request event: 14
- Fork event: 2
- Create event: 5
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 168
- Total Committers: 5
- Avg Commits per committer: 33.6
- Development Distribution Score (DDS): 0.452
Top Committers
| Name | Commits | |
|---|---|---|
| Anwar Nunez-Elizalde | a****z@g****m | 92 |
| Anwar Nunez-Elizalde | a****z@u****m | 57 |
| Tom Dupré la Tour | t****r@m****g | 10 |
| Matteo Visconti di Oleggio Castello | m****c@b****u | 8 |
| Matteo Visconti di Oleggio Castello | m****c@u****m | 1 |
Committer Domains (Top 20 + Academic)
berkeley.edu: 1
m4x.org: 1
Issues and Pull Requests
Last synced: over 1 year ago
All Time
- Total issues: 17
- Total pull requests: 19
- Average time to close issues: 10 months
- Average time to close pull requests: 21 days
- Total issue authors: 5
- Total pull request authors: 8
- Average comments per issue: 0.59
- Average comments per pull request: 0.74
- Merged pull requests: 17
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 2
- Pull requests: 6
- Average time to close issues: about 1 month
- Average time to close pull requests: 1 day
- Issue authors: 2
- Pull request authors: 3
- Average comments per issue: 1.0
- Average comments per pull request: 0.67
- Merged pull requests: 6
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- anwarnunez (12)
- mvdoc (2)
- Sino0904 (1)
- Yuan-fang (1)
- ekintuncok (1)
Pull Request Authors
- mvdoc (8)
- dependabot[bot] (8)
- yuerout (5)
- TomDLT (5)
- anwarnunez (2)
- rysk-t (2)
- ctseng12 (1)
- eickenberg (1)
- marklescroart (1)
Top Labels
Issue Labels
enhancement (1)
Pull Request Labels
dependencies (8)
github_actions (1)
Packages
- Total packages: 1
-
Total downloads:
- pypi 150 last-month
- Total dependent packages: 1
- Total dependent repositories: 1
- Total versions: 9
- Total maintainers: 2
pypi.org: pymoten
Extract motion energy features from video using spatio-temporal Gabors
- Homepage: https://gallantlab.github.io/pymoten/
- Documentation: https://pymoten.readthedocs.io/
- License: bsd-2-clause
-
Latest release: 0.0.8
published over 1 year ago
Rankings
Dependent packages count: 4.6%
Forks count: 12.6%
Stargazers count: 12.6%
Average: 14.4%
Downloads: 20.1%
Dependent repos count: 21.9%
Maintainers (2)
Last synced:
6 months ago
Dependencies
requirements.txt
pypi
- Pillow *
- matplotlib *
- numpy *
- opencv-python *
- scipy *
test_requirements.txt
pypi
- Pillow * test
- codecov * test
- matplotlib * test
- numpy * test
- opencv-python * test
- pytest * test
- pytest-cov * test
- scikit-image * test
- scipy * test
setup.py
pypi
.github/workflows/build_docs.yml
actions
- JamesIves/github-pages-deploy-action v4.6.3 composite
- actions/cache v4 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
.github/workflows/publish_to_pypi.yml
actions
- actions/checkout v4 composite
- actions/setup-python v5 composite
.github/workflows/run_tests.yml
actions
- actions/cache v4 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- codecov/codecov-action v4 composite