star-mmrotate
[TPAMI] Oriented object detection on STAR dataset.
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.7%) to scientific vocabulary
Keywords
Repository
[TPAMI] Oriented object detection on STAR dataset.
Basic Info
- Host: GitHub
- Owner: VisionXLab
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://linlin-dev.github.io/project/STAR.html
- Size: 166 MB
Statistics
- Stars: 76
- Watchers: 4
- Forks: 4
- Open Issues: 5
- Releases: 0
Topics
Metadata Files
README.md
STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery (TPAMI)
The official implementation of the oriented object detection part of the paper "STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery".
Highlights
TL;DR: We propose STAR, the first large-scale dataset for scene graph generation in large-size VHR SAI. Containing more than 210,000 objects and over 400,000 triplets across 1,273 complex scenarios globally.
https://private-user-images.githubusercontent.com/29257168/345304070-0d1b8726-5a46-4182-95b9-bc70a050e49b.mp4
Abstract
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets
Usage
More instructions on installation, pretrained models, training and evaluation, please refer to MMRotate 0.3.4.
- Clone this repo:
bash
git clone https://github.com/yangxue0827/STAR-MMRotate
cd STAR-MMRotate/
- Create a conda virtual environment and activate it:
bash
conda create -n STAR-MMRotate python=3.8 -y
conda activate STAR-MMRotate
- Install Pytorch:
bash
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
- Install requirements:
```bash pip install openmim mim install mmcv-full mim install mmdet
cd mmrotate pip install -r requirements/build.txt pip install -v -e .
pip install timm pip install ipdb
# Optional, only for G-Rep git clone git@github.com:KinglittleQ/torch-batch-svd.git cd torch-batch-svd/ python setup.py install ```
Released Models
Oriented Object Detection
| Detector | mAP | Configs | Download | Note | | :--------: |:---:|:-------:|:--------:|:----:| | Deformable DETR | 17.1 | deformabledetrr501xstar | log | ckpt | | ARS-DETR | 28.1 | dnarwarmarcslrdetrr501x_star | log | ckpt | | RetinaNet | 21.8 | rotatedretinanethbbr50fpn1xstar_oc | log | ckpt | | ATSS | 20.4 | rotatedatsshbbr50fpn1xstar_oc | log | ckpt | | KLD | 25.0 | rotatedretinanethbbkldr50fpn1xstaroc | log | ckpt | | GWD | 25.3 | rotatedretinanethbbgwdr50fpn1xstaroc | log | ckpt | | KFIoU | 25.5 | rotatedretinanethbbkfiour50fpn1xstaroc | log | ckpt | | DCFL | 29.0 | dcflr50fpn1xstar_le135 | log | ckpt | | R3Det | 23.7 | r3detr50fpn1xstar_oc | log | ckpt | | S2A-Net | 27.3 | s2anetr50fpn1xstar_le135 | log | ckpt | | FCOS | 28.1 | rotatedfcosr50fpn1xstarle90 | log | ckpt | | CSL | 27.4 | rotatedfcoscslgaussianr50fpn1xstarle90 | log | ckpt | | PSC | 30.5 | rotatedfcospscr50fpn1xstar_le90 | log | ckpt | | H2RBox-v2 | 27.3 | h2rboxv2pr50fpn1xstarle90 | log | ckpt | | RepPoints | 19.7 | rotatedreppointsr50fpn1xstaroc | log | ckpt | | CFA | 25.1 | cfar50fpn1xstar_le135 | log | ckpt | | Oriented RepPoints | 27.0 | orientedreppointsr50fpn1xstarle135 | log | ckpt | | | G-Rep | 26.9 | greppointsr50fpn1xstarle135 | log | ckpt | | SASM | 28.2 | sasmreppointsr50fpn1xstaroc | log | ckpt | p_bs=2 | | Faster RCNN | 32.6 | rotatedfasterrcnnr50fpn1xstar_le90 | log | ckpt | | Gliding Vertex | 30.7 | glidingvertexr50fpn1xstarle90 | log | ckpt | | Oriented RCNN | 33.2 | orientedrcnnr50fpn1xstarle90 | log | ckpt | | RoI Transformer | 35.7 | roitransr50fpn1xstarle90 | log | ckpt | | LSKNet-T | 34.7 | lsktfpn1xstar_le90 | log | ckpt | | LSKNet-S | 37.8 | lsksfpn1xstar_le90 | log | ckpt | | PKINet-S | 32.8 | pkinetsfpn1xstar_le90 | log | ckpt | | ReDet | 39.1 | redetre50refpn1xstar_le90 | log | ckpt | ReResNet50 | | Oriented RCNN | 40.7 | orientedrcnnswin-lfpn1xstarle90 | log | ckpt | Swin-L |
Citation
If you find this work helpful for your research, please consider giving this repo a star and citing our paper:
bibtex
@article{li2024star,
title={Star: A first-ever dataset and a large-scale benchmark for scene graph generation in large-size satellite imagery},
author={Li, Yansheng and Wang, Linlin and Wang, Tingzhu and Yang, Xue and Luo, Junwei and Wang, Qi and Deng, Youming and Wang, Wenbin and Sun, Xian and Li, Haifeng and others},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2024},
publisher={IEEE}
}
License
This project is released under the Apache license. Parts of this project contain code and models from other sources, which are subject to their respective licenses.
Owner
- Name: VisionXLab
- Login: VisionXLab
- Kind: organization
- Email: yangxue0827@126.com
- Website: https://yangxue.site/
- Repositories: 1
- Profile: https://github.com/VisionXLab
VisionXLab at Shanghai Jiao Tong University, led by Prof. Xue Yang.
GitHub Events
Total
- Issues event: 3
- Watch event: 10
- Issue comment event: 1
- Push event: 1
- Fork event: 1
Last Year
- Issues event: 3
- Watch event: 10
- Issue comment event: 1
- Push event: 1
- Fork event: 1
Issues and Pull Requests
Last synced: 11 months ago
All Time
- Total issues: 11
- Total pull requests: 0
- Average time to close issues: about 1 month
- Average time to close pull requests: N/A
- Total issue authors: 9
- Total pull request authors: 0
- Average comments per issue: 2.18
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 11
- Pull requests: 0
- Average time to close issues: about 1 month
- Average time to close pull requests: N/A
- Issue authors: 9
- Pull request authors: 0
- Average comments per issue: 2.18
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- hias-lcj (2)
- AlNaCl (1)
- luckytanyy (1)
- xavibou (1)
- yangxue0827 (1)
- chagmgang (1)
- 4del-Yousefi (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- cython *
- numpy *
- docutils ==0.16.0
- markdown >=3.4.0
- myst-parser *
- sphinx ==4.0.2
- sphinx-copybutton *
- sphinx_markdown_tables >=0.0.16
- sphinx_rtd_theme ==0.5.2
- mmcv-full >=1.5.0
- imagecorruptions *
- scikit-learn *
- scipy *
- e2cnn *
- mmcv *
- mmdet >=2.25.1,<3.0.0
- torch *
- torchvision *
- matplotlib *
- mmcv-full *
- mmdet >=2.25.1,<3.0.0
- numpy *
- pycocotools *
- six *
- terminaltables *
- torch *
- asynctest * test
- codecov * test
- coverage * test
- cython * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- kwarray * test
- matplotlib * test
- pytest * test
- scikit-learn * test
- ubelt * test
- wheel * test
- xdoctest >=0.10.0 test
- yapf * test