CR-Sparse

CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX - Published in JOSS (2021)

https://github.com/carnotresearch/cr-sparse

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

basis-pursuit compressive-sensing convex-optimization functional-programming jax l1-regularization lasso linear-operators sparse-bayesian-learning sparse-linear-systems sparse-representations wavelets
Last synced: 4 months ago · JSON representation ·

Repository

Functional models and algorithms for sparse signal processing

Basic Info
  • Host: GitHub
  • Owner: carnotresearch
  • License: apache-2.0
  • Language: Jupyter Notebook
  • Default Branch: main
  • Homepage: https://cr-sparse.readthedocs.io
  • Size: 81.6 MB
Statistics
  • Stars: 94
  • Watchers: 5
  • Forks: 11
  • Open Issues: 3
  • Releases: 12
Topics
basis-pursuit compressive-sensing convex-optimization functional-programming jax l1-regularization lasso linear-operators sparse-bayesian-learning sparse-linear-systems sparse-representations wavelets
Created about 5 years ago · Last pushed about 2 years ago
Metadata Files
Readme Changelog Contributing Funding License Code of conduct Citation Codemeta

README.rst

Functional Models and Algorithms for Sparse Signal Processing   
==================================================================


|pypi| |license| |zenodo| |docs| |unit_tests| |coverage| |joss|


Introduction
-------------------


CR-Sparse is a Python library that enables efficiently solving
a wide variety of sparse representation based signal processing problems.
It is a cohesive collection of sub-libraries working together. Individual
sub-libraries provide functionalities for:
wavelets, linear operators, greedy and convex optimization 
based sparse recovery algorithms, subspace clustering, 
standard signal processing transforms,
and linear algebra subroutines for solving sparse linear systems. 
It has been built using `Google JAX `_, 
which enables the same high level
Python code to get efficiently compiled on CPU, GPU and TPU architectures
using `XLA `_. 

.. image:: docs/images/srr_cs.png

For detailed documentation and usage, please visit `online docs `_.

For theoretical background, please check online notes at `Topics in Signal Processing `_
and references therein (still under development).

``CR-Sparse`` is part of
`CR-Suite `_.

Related libraries:

* `CR-Nimble `_
* `CR-Wavelets `_


Supported Platforms
----------------------

``CR-Sparse`` can run on any platform supported by ``JAX``. 
We have tested ``CR-Sparse`` on Mac and Linux platforms and Google Colaboratory.

* The latest code in the library has been tested against JAX 0.4.

``JAX`` is not officially supported on Windows platforms at the moment. 
Although, it is possible to build it from source using Windows Subsystems for Linux.
Alternatively, you can check out the community supported Windows build for JAX
available from https://github.com/cloudhan/jax-windows-builder.
This seems to work well and all the unit tests in the library have passed
on Windows also. 

Installation
-------------------------------

Installation from PyPI:

.. code:: shell

    python -m pip install cr-sparse

Directly from our GITHUB repository:

.. code:: shell

    python -m pip install git+https://github.com/carnotresearch/cr-sparse.git



Examples/Usage
----------------

See the `examples gallery `_ in the documentation.
Here is a small selection of examples:

* `Sparse recovery using Truncated Newton Interior Points Method `_ 
* `Sparse recovery with ADMM `_ 
* `Compressive sensing operators `_ 
* `Image deblurring with LSQR and FISTA algorithms `_ 
* `Deconvolution of the effects of a Ricker wavelet `_ 
* `Wavelet transform operators `_ 
* `CoSaMP step by step `_ 


A more extensive collection of example notebooks is available in the `companion repository `_.
Some micro-benchmarks are reported `here `_.


Contribution Guidelines/Code of Conduct
----------------------------------------

* `Contribution Guidelines `_
* `Code of Conduct `_

Citing CR-Sparse
------------------------


To cite this library:

.. code:: tex

    @article{Kumar2021,
      doi = {10.21105/joss.03917},
      url = {https://doi.org/10.21105/joss.03917},
      year = {2021},
      publisher = {The Open Journal},
      volume = {6},
      number = {68},
      pages = {3917},
      author = {Shailesh Kumar},
      title = {CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX},
      journal = {Journal of Open Source Software}
    }




`Documentation `_ | 
`Code `_ | 
`Issues `_ | 
`Discussions `_ |


.. |docs| image:: https://readthedocs.org/projects/cr-sparse/badge/?version=latest
    :target: https://cr-sparse.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status
    :scale: 100%

.. |unit_tests| image:: https://github.com/carnotresearch/cr-sparse/actions/workflows/ci.yml/badge.svg
    :alt: Unit Tests
    :scale: 100%
    :target: https://github.com/carnotresearch/cr-sparse/actions/workflows/ci.yml


.. |pypi| image:: https://badge.fury.io/py/cr-sparse.svg
    :alt: PyPI cr-sparse
    :scale: 100%
    :target: https://badge.fury.io/py/cr-sparse

.. |coverage| image:: https://codecov.io/gh/carnotresearch/cr-sparse/branch/master/graph/badge.svg?token=JZQW6QU3S4
    :alt: Coverage
    :scale: 100%
    :target: https://codecov.io/gh/carnotresearch/cr-sparse


.. |license| image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg
    :alt: License
    :scale: 100%
    :target: https://opensource.org/licenses/Apache-2.0

.. |codacy| image:: https://app.codacy.com/project/badge/Grade/36905009377e4a968124dabb6cd24aae
    :alt: Codacy Badge
    :scale: 100%
    :target: https://www.codacy.com/gh/carnotresearch/cr-sparse/dashboard?utm_source=github.com&utm_medium=referral&utm_content=carnotresearch/cr-sparse&utm_campaign=Badge_Grade

.. |zenodo| image:: https://zenodo.org/badge/323566858.svg
    :alt: DOI
    :scale: 100%
    :target: https://zenodo.org/badge/latestdoi/323566858

.. |joss| image:: https://joss.theoj.org/papers/ebd4e5ca27a5db705b1dc382b64e0bed/status.svg
    :alt: JOSS
    :scale: 100%
    :target: https://joss.theoj.org/papers/ebd4e5ca27a5db705b1dc382b64e0bed

Owner

  • Name: Carnot Research Pvt. Ltd.
  • Login: carnotresearch
  • Kind: organization

JOSS Publication

CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX
Published
December 02, 2021
Volume 6, Issue 68, Page 3917
Authors
Shailesh Kumar ORCID
Indian Institute of Technology, Delhi
Editor
Pierre de Buyl ORCID
Tags
sparse and redundant representations compressive sensing wavelets linear operators sparse subspace clustering functional programming

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: Kumar
    given-names: Shailesh
    orcid: https://orcid.org/0000-0003-2217-4768
title: "CR-Sparse: Functional Models and Algorithms for Sparse Signal Processing"
doi: 10.5281/zenodo.7066359
url: https://github.com/carnotresearch/cr-sparse
year: 2022
version: 0.3.1
preferred-citation:
  type: article
  authors:
  - family-names: "Kumar"
    given-names: "Shailesh"
    orcid: "https://orcid.org/0000-0003-2217-4768"
  doi: "10.21105/joss.03917"
  journal: "Journal of Open Source Software"
  publisher: "The Open Journal"
  url: "https://doi.org/10.21105/joss.03917"
  pages: 3917
  title: "CR-Sparse: Hardware accelerated functional algorithms for sparse signal processing in Python using JAX"
  volume: 6
  year: 2021

CodeMeta (codemeta.json)

{
  "@context": "https://raw.githubusercontent.com/codemeta/codemeta/master/codemeta.jsonld",
  "@type": "Code",
  "author": [
    {
      "@id": "0000-0003-2217-4768",
      "@type": "Person",
      "email": "shaileshk@gmail.com",
      "name": "Shailesh Kumar",
      "affiliation": "Indian Institute of Technology, Delhi"
    }
  ],
  "identifier": "",
  "codeRepository": "https://github.com/carnotresearch/cr-sparse",
  "datePublished": "2021-10-28",
  "dateModified": "2021-10-28",
  "dateCreated": "2021-10-28",
  "description": "Functional models and algorithms for sparse signal processing",
  "keywords": "functional programming, sparse linear systems, convex optimization, compressive sensing, sparse recovery, wavelets, jax, sparse subspace clustering",
  "license": "Apache 2.0",
  "title": "CR-Sparse",
  "version": "0.2.0"
}

GitHub Events

Total
  • Watch event: 7
  • Fork event: 1
Last Year
  • Watch event: 8
  • Fork event: 1

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,031
  • Total Committers: 2
  • Avg Commits per committer: 515.5
  • Development Distribution Score (DDS): 0.001
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Shailesh Kumar s****h@i****m 1,030
Shailesh Kumar 6****h 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 16
  • Total pull requests: 0
  • Average time to close issues: 5 months
  • Average time to close pull requests: N/A
  • Total issue authors: 7
  • Total pull request authors: 0
  • Average comments per issue: 1.31
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • shailesh1729 (5)
  • carnot-shailesh (4)
  • Saran-nns (2)
  • mirca (2)
  • RauliRuohonen (1)
  • igibek (1)
  • joeybarreto (1)
Pull Request Authors
Top Labels
Issue Labels
recovery algorithm (5) evaluation (1)
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 47 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 2
    (may contain duplicates)
  • Total versions: 23
  • Total maintainers: 1
proxy.golang.org: github.com/carnotresearch/cr-sparse
  • Versions: 10
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 7.0%
Average: 8.2%
Dependent repos count: 9.3%
Last synced: 4 months ago
pypi.org: cr-sparse

Accelerated sparse representations and compressive sensing

  • Versions: 13
  • Dependent Packages: 0
  • Dependent Repositories: 2
  • Downloads: 47 Last month
Rankings
Stargazers count: 8.1%
Dependent packages count: 10.0%
Average: 11.0%
Dependent repos count: 11.6%
Forks count: 11.9%
Downloads: 13.2%
Maintainers (1)
Last synced: 4 months ago

Dependencies

docs/requirements.txt pypi
  • IPython >=7.16.1
  • PyWavelets *
  • chex >=0.0.4
  • click *
  • cr-nimble >=0.3.1
  • cr-wavelets >=0.3.0
  • imageio *
  • ipykernel >=5.3.4
  • jax >=0.1.55
  • jaxlib >=0.1.37
  • matplotlib *
  • myst-parser *
  • nbsphinx >=0.8.0
  • numpy >=1.18.0
  • pandas *
  • pillow *
  • requests *
  • scikit-image *
  • scikit-learn *
  • scipy *
  • sphinx ==4.0.0
  • sphinx-autodoc-typehints >=1.11.1
  • sphinx-gallery >=0.8.0
  • sphinx-panels *
  • sphinxcontrib-bibtex >=1.0.0
  • sphinxcontrib-katex >=0.7.1
  • sympy >=1.6
requirements/requirements-docs.txt pypi
  • IPython >=7.16.1
  • cr-nimble *
  • ipykernel >=5.3.4
  • nbsphinx >=0.8.0
  • pandoc >>=1.0.2
  • requests *
  • sphinx >=3.3.0
  • sphinx-autodoc-typehints >=1.11.1
  • sphinx_rtd_theme >=0.5.0
  • sphinxcontrib-bibtex >=1.0.0
  • sphinxcontrib-katex >=0.7.1
requirements/requirements-tests.txt pypi
  • pytest * test
  • pytest-cov * test
requirements/requirements.txt pypi
  • chex >=0.0.4
  • click *
  • cr-nimble >=0.3.1
  • cr-wavelets >=0.3.0
  • imageio *
  • jax >=0.3.14
  • jaxlib >=0.3.14
  • matplotlib *
  • numpy >=1.18.0
  • pandas >=1.0.0
  • requests >=2.20.0
  • scipy *
  • sympy >=1.6
.github/workflows/ci.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v1 composite
  • zcong1993/setup-timezone master composite
.github/workflows/release.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/sphinx.yaml actions
  • actions/cache v2 composite
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • ammaraskar/sphinx-problem-matcher master composite
  • peaceiris/actions-gh-pages v3 composite
requirements/requirements-examples.txt pypi
  • cr-nimble >=0.4.0
  • cr-wavelets >=0.4.0
setup.py pypi