qudi-hira-analysis
Analytics suite for FPGA based qubit time-series photonics
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
2 of 4 committers (50.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.6%) to scientific vocabulary
Keywords
Repository
Analytics suite for FPGA based qubit time-series photonics
Basic Info
- Host: GitHub
- Owner: dineshpinto
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://dineshpinto.github.io/qudi-hira-analysis/
- Size: 10.9 MB
Statistics
- Stars: 10
- Watchers: 2
- Forks: 2
- Open Issues: 0
- Releases: 10
Topics
Metadata Files
README.md
Qudi Hira Analysis
Analytics suite for qubit SPM using FPGA timetaggers
Installation
bash
pip install qudi-hira-analysis
Update to latest version
bash
pip install --upgrade qudi-hira-analysis
Citation
If you are publishing scientific results that use this code, as good scientific practice you should cite this work.
Features
- Automated data import and handling
- Works natively with data from Qudi and Qudi-Hira
- Fast and robust curve fitting for NV-ODMR 2D maps, Autocorrelation, Rabi, Ramsey, T1, T2 and more...
- Supports all file formats used in NV magnetometry, AFM, MFM and NV-SPM
- Uses a Dataclass-centered design for easy access to data and metadata
Usage
```python from pathlib import Path import seaborn as sns
from qudihiraanalysis import DataHandler
dh = DataHandler( datafolder=Path("C:/Data"), # Path to data folder figurefolder=Path("C:/QudiHiraAnalysis"), # Path to figure folder measurementfolder=Path("20230101NV1") # Measurement folder name (optional) )
Lazy-load all pulsed measurements with "odmr" in the path into a Dataclass
odmrmeasurements = dh.loadmeasurements("odmr", pulsed=True)
Fit ODMR data with a double Lorentzian
odmr = odmrmeasurements["20230101-0420-00"] xfit, yfit, result = dh.fit(x="Controlled variable(Hz)", y="Signal", fitfunction=dh.fit_function.lorentziandouble, data=odmr.data)
Plot the data and the fit
ax = sns.scatterplot(x="Controlled variable(Hz)", y="Signal", data=odmr.data, label="Data") sns.lineplot(x=xfit, y=yfit, ax=ax, label="Fit")
Calculate the ODMR splitting
ax.axvline(result.bestvalues["l0center"], ls="--", color="C1") ax.axvline(result.bestvalues["l1center"], ls="--", color="C1") splitting = result.bestvalues["l1center"] - result.bestvalues["l0center"] ax.set_title(f"ODMR splitting = {splitting / 1e6:.1f} MHz")
Generate fit report
print(result.fit_report())
Save figure
dh.savefigures(filepath=Path("odmrfit"), fig=ax.get_figure())
```

Documentation
The full documentation is available here.
Schema
Overall
mermaid
flowchart TD
IOHandler <-- Handle IO operations --> DataLoader;
DataLoader <-- Map IO callables --> DataHandler;
Qudi[Qudi FitLogic] --> AnalysisLogic;
AnalysisLogic -- Inject fit functions --> DataHandler;
DataHandler -- Fit data --> Plot;
DataHandler -- Structure data --> MeasurementDataclass;
MeasurementDataclass -- Plot data --> Plot[JupyterLab Notebook];
Plot -- Save plotted data --> DataHandler;
style MeasurementDataclass fill: #bbf, stroke: #f66, stroke-width: 2px, color: #fff, stroke-dasharray: 5 5
Dataclass
mermaid
flowchart LR
subgraph Standard Data
MeasurementDataclass --o filepath1[filepath: Path];
MeasurementDataclass --o data1[data: DataFrame];
MeasurementDataclass --o params1[params: dict];
MeasurementDataclass --o timestamp1[timestamp: datetime.datetime];
MeasurementDataclass --o methods1[get_param_from_filename: Callable];
MeasurementDataclass --o methods2[set_datetime_index: Callable];
end
subgraph Pulsed Data
MeasurementDataclass -- pulsed --> PulsedMeasurementDataclass;
PulsedMeasurementDataclass -- measurement --> PulsedMeasurement;
PulsedMeasurement --o filepath2[filepath: Path];
PulsedMeasurement --o data2[data: DataFrame];
PulsedMeasurement --o params2[params: dict];
PulsedMeasurementDataclass -- laser_pulses --> LaserPulses;
LaserPulses --o filepath3[filepath: Path];
LaserPulses --o data3[data: DataFrame];
LaserPulses --o params3[params: dict];
PulsedMeasurementDataclass -- timetrace --> RawTimetrace;
RawTimetrace --o filepath4[filepath: Path];
RawTimetrace --o data4[data: DataFrame];
RawTimetrace --o params4[params: dict];
end
License
This license of this project is located in the top level folder under LICENSE. Some specific files contain their
individual licenses in the file header docstring.
Build
Prerequisites
Clone repo, install deps and add environment to Jupyter
shell
git clone https://github.com/dineshpinto/qudi-hira-analysis.git
cd qudi-hira-analysis
poetry install
poetry run python -m ipykernel install --user --name=qudi-hira-analysis
poetry run jupyter lab
Makefile
The Makefile located in notebooks/ is configured to generate a variety of outputs:
make pdf: Converts all notebooks to PDF (requires LaTeX backend)make html: Converts all notebooks to HTMLmake py: Converts all notebooks to Python (can be useful for VCS)make all: Sequentially runs all the notebooks in folder
To use the make command on Windows you can install Chocolatey, then
install make with choco install make
Owner
- Name: Dinesh Pinto
- Login: dineshpinto
- Kind: user
- Location: Switzerland/Germany
- Website: dineshpinto.github.io
- Twitter: dineshkpinto
- Repositories: 6
- Profile: https://github.com/dineshpinto
quantum info PhD student @ EPFL, pythonista & rustacean
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
authors:
- family-names: "Pinto"
given-names: "Dinesh"
orcid: "https://orcid.org/0000-0002-1604-2200"
title: "qudi-hira-analysis"
version: v1.0.1
doi: 10.5281/zenodo.7604670
date-released: 2023-02-04
url: "https://github.com/dineshpinto/qudi-hira-analysis"
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 284
- Total Committers: 4
- Avg Commits per committer: 71.0
- Development Distribution Score (DDS): 0.313
Top Committers
| Name | Commits | |
|---|---|---|
| Dinesh Pinto | d****o@f****e | 195 |
| dineshpinto | d****5@g****m | 83 |
| dineshpinto | a****z@i****m | 5 |
| unknown | p****o@f****e | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 2
- Average time to close issues: 23 days
- Average time to close pull requests: less than a minute
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- dineshpinto (1)
Pull Request Authors
- dineshpinto (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 141 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 25
- Total maintainers: 1
pypi.org: qudi-hira-analysis
A Python toolkit to analzye photon timetrace data from qubit sensors
- Homepage: https://github.com/dineshpinto/qudi-hira-analysis
- Documentation: https://dineshpinto.github.io/qudi-hira-analysis/qudi_hira_analysis/
- License: Apache-2.0
-
Latest release: 1.6.3
published almost 2 years ago
Rankings
Maintainers (1)
Dependencies
- 118 dependencies