qudi-hira-analysis

Analytics suite for FPGA based qubit time-series photonics

https://github.com/dineshpinto/qudi-hira-analysis

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 2 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    2 of 4 committers (50.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.6%) to scientific vocabulary

Keywords

nv-centers physics python quantum-computing scanning-probe-microscopy time-series-analysis
Last synced: 6 months ago · JSON representation ·

Repository

Analytics suite for FPGA based qubit time-series photonics

Basic Info
Statistics
  • Stars: 10
  • Watchers: 2
  • Forks: 2
  • Open Issues: 0
  • Releases: 10
Topics
nv-centers physics python quantum-computing scanning-probe-microscopy time-series-analysis
Created over 5 years ago · Last pushed almost 2 years ago
Metadata Files
Readme License Citation Zenodo

README.md

DOI PyPi version Python 3.10 Downloads codecov unittest

Qudi Hira Analysis

Analytics suite for qubit SPM using FPGA timetaggers

Installation

bash pip install qudi-hira-analysis

Update to latest version

bash pip install --upgrade qudi-hira-analysis

Citation

If you are publishing scientific results that use this code, as good scientific practice you should cite this work.

Features

  • Automated data import and handling
  • Works natively with data from Qudi and Qudi-Hira
  • Fast and robust curve fitting for NV-ODMR 2D maps, Autocorrelation, Rabi, Ramsey, T1, T2 and more...
  • Supports all file formats used in NV magnetometry, AFM, MFM and NV-SPM
  • Uses a Dataclass-centered design for easy access to data and metadata

Usage

```python from pathlib import Path import seaborn as sns

from qudihiraanalysis import DataHandler

dh = DataHandler( datafolder=Path("C:/Data"), # Path to data folder figurefolder=Path("C:/QudiHiraAnalysis"), # Path to figure folder measurementfolder=Path("20230101NV1") # Measurement folder name (optional) )

Lazy-load all pulsed measurements with "odmr" in the path into a Dataclass

odmrmeasurements = dh.loadmeasurements("odmr", pulsed=True)

Fit ODMR data with a double Lorentzian

odmr = odmrmeasurements["20230101-0420-00"] xfit, yfit, result = dh.fit(x="Controlled variable(Hz)", y="Signal", fitfunction=dh.fit_function.lorentziandouble, data=odmr.data)

Plot the data and the fit

ax = sns.scatterplot(x="Controlled variable(Hz)", y="Signal", data=odmr.data, label="Data") sns.lineplot(x=xfit, y=yfit, ax=ax, label="Fit")

Calculate the ODMR splitting

ax.axvline(result.bestvalues["l0center"], ls="--", color="C1") ax.axvline(result.bestvalues["l1center"], ls="--", color="C1") splitting = result.bestvalues["l1center"] - result.bestvalues["l0center"] ax.set_title(f"ODMR splitting = {splitting / 1e6:.1f} MHz")

Generate fit report

print(result.fit_report())

Save figure

dh.savefigures(filepath=Path("odmrfit"), fig=ax.get_figure()) ``` ODMR

Documentation

The full documentation is available here.

Schema

Overall

mermaid flowchart TD IOHandler <-- Handle IO operations --> DataLoader; DataLoader <-- Map IO callables --> DataHandler; Qudi[Qudi FitLogic] --> AnalysisLogic; AnalysisLogic -- Inject fit functions --> DataHandler; DataHandler -- Fit data --> Plot; DataHandler -- Structure data --> MeasurementDataclass; MeasurementDataclass -- Plot data --> Plot[JupyterLab Notebook]; Plot -- Save plotted data --> DataHandler; style MeasurementDataclass fill: #bbf, stroke: #f66, stroke-width: 2px, color: #fff, stroke-dasharray: 5 5

Dataclass

mermaid flowchart LR subgraph Standard Data MeasurementDataclass --o filepath1[filepath: Path]; MeasurementDataclass --o data1[data: DataFrame]; MeasurementDataclass --o params1[params: dict]; MeasurementDataclass --o timestamp1[timestamp: datetime.datetime]; MeasurementDataclass --o methods1[get_param_from_filename: Callable]; MeasurementDataclass --o methods2[set_datetime_index: Callable]; end subgraph Pulsed Data MeasurementDataclass -- pulsed --> PulsedMeasurementDataclass; PulsedMeasurementDataclass -- measurement --> PulsedMeasurement; PulsedMeasurement --o filepath2[filepath: Path]; PulsedMeasurement --o data2[data: DataFrame]; PulsedMeasurement --o params2[params: dict]; PulsedMeasurementDataclass -- laser_pulses --> LaserPulses; LaserPulses --o filepath3[filepath: Path]; LaserPulses --o data3[data: DataFrame]; LaserPulses --o params3[params: dict]; PulsedMeasurementDataclass -- timetrace --> RawTimetrace; RawTimetrace --o filepath4[filepath: Path]; RawTimetrace --o data4[data: DataFrame]; RawTimetrace --o params4[params: dict]; end

License

This license of this project is located in the top level folder under LICENSE. Some specific files contain their individual licenses in the file header docstring.

Build

Prerequisites

Clone repo, install deps and add environment to Jupyter

shell git clone https://github.com/dineshpinto/qudi-hira-analysis.git cd qudi-hira-analysis poetry install poetry run python -m ipykernel install --user --name=qudi-hira-analysis poetry run jupyter lab

Makefile

The Makefile located in notebooks/ is configured to generate a variety of outputs:

  • make pdf : Converts all notebooks to PDF (requires LaTeX backend)
  • make html: Converts all notebooks to HTML
  • make py : Converts all notebooks to Python (can be useful for VCS)
  • make all : Sequentially runs all the notebooks in folder

To use the make command on Windows you can install Chocolatey, then install make with choco install make

Owner

  • Name: Dinesh Pinto
  • Login: dineshpinto
  • Kind: user
  • Location: Switzerland/Germany

quantum info PhD student @ EPFL, pythonista & rustacean

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
authors:
  - family-names: "Pinto"
    given-names: "Dinesh"
    orcid: "https://orcid.org/0000-0002-1604-2200"
title: "qudi-hira-analysis"
version: v1.0.1
doi: 10.5281/zenodo.7604670
date-released: 2023-02-04
url: "https://github.com/dineshpinto/qudi-hira-analysis"

GitHub Events

Total
  • Watch event: 1
Last Year
  • Watch event: 1

Committers

Last synced: almost 3 years ago

All Time
  • Total Commits: 284
  • Total Committers: 4
  • Avg Commits per committer: 71.0
  • Development Distribution Score (DDS): 0.313
Top Committers
Name Email Commits
Dinesh Pinto d****o@f****e 195
dineshpinto d****5@g****m 83
dineshpinto a****z@i****m 5
unknown p****o@f****e 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 1
  • Total pull requests: 2
  • Average time to close issues: 23 days
  • Average time to close pull requests: less than a minute
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 2
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • dineshpinto (1)
Pull Request Authors
  • dineshpinto (2)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 141 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 25
  • Total maintainers: 1
pypi.org: qudi-hira-analysis

A Python toolkit to analzye photon timetrace data from qubit sensors

  • Versions: 25
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 141 Last month
Rankings
Dependent packages count: 6.6%
Stargazers count: 20.5%
Average: 23.8%
Forks count: 30.5%
Downloads: 30.5%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago

Dependencies

poetry.lock pypi
  • 118 dependencies