vayuai
Vayuvahana Technologies Private Limited presents to you VajraV1, a state-of-the-art (SOTA) real time object detection model
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.6%) to scientific vocabulary
Keywords
Repository
Vayuvahana Technologies Private Limited presents to you VajraV1, a state-of-the-art (SOTA) real time object detection model
Basic Info
Statistics
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 2
Topics
Metadata Files
README.md
Vayuvahana Technologies Private Limited VajraV1 is a state-of-the-art (SOTA) real time object detection model inspired by the YOLO model architectures. VajraV1 is a family of fast, lightweight models that can be used for a variety of tasks like object detection and tracking, instance segmentation, oriented object detection, pose detection, and image classification.
Enterprise License
To request for an Enterprise License please get in touch via Email
Performance on COCO Dataset
| Model | Size (pixels) | mAPval
50-95 | Speed
RTX 4090 TensorRT10 Latency (ms) | Params (M) | FLOPs (B) |
|-------------------------------------------------------------------------------------|---------------|----------------------------|-----------------------------------------------------|------------|-----------|
| VajraV1-nano-det | 640 | 41.2 | 1.4 | 3.36 | 8.2 |
| VajraV1-small-det | 640 | 47.7 | 1.4 | 12.38 | 27.9 |
| VajraV1-medium-det | 640 | | 1.8 | 21.15 | 75.1 |
| VajraV1-large-det | 640 | | 2.4 | 25.75 | 93.1 |
| VajraV1-xlarge-det | 640 | | 2.9 | 57.83 | 208.3 |
Performance on VisDrone Dataset
| Model | size
(pixels) | mAPtest-dev
50-95 | mAPval
50-95 | Speed
RTX 4090 TensorRT10 Latency
(ms) | params
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| VajraV1-nano-det | 640 | 25.5 | 20.8 | 1.4 | 3.32 | 8.0 |
| VajraV1-small-det | 640 | 27.3 | 24.3 | 1.4 | 12.36 | 27.7 |
| VajraV1-medium-det | 640 | 29.7 | 27.7 | 1.8 | 21.09 | 74.8 |
| VajraV1-large-det | 640 | 30.0 | 28.0 | 2.4 | 25.70 | 92.8 |
| VajraV1-xlarge-det | 640 | 30.4 | 29.7 | 2.9 | 57.75 | 207.8 |
Results on COCO dataset to be published soon!
Documentation
Install
Git clone the VayuAI SDK including all [requirements](https://github.com/NamanMakkar/VayuAI/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org) environment. ```bash git clone https://github.com/NamanMakkar/VayuAI.git cd VayuAI pip install . ```Usage
### CLI Vajra can be used in the Command Line Interface with a `vajra` or `vayuvahana` or `vayuai` command: ```bash vajra predict model=vajra-v1-nano-det img_size=640 source="path/to/source.jpg" ``` ### Python Vajra can also be used directly in a Python environment, and accepts the same arguments as in the CLI example above: ```python from vajra import Vajra, VajraDEYO model = Vajra("vajra-v1-nano-det") model_vajra_deyo = VajraDEYO("vajra-deyo-v1-nano-det") train_results = model.train( data="coco8.yaml", epochs=100, img_size=640, device="cpu", weight_decay=0., ) metrics = model.val() results = model("path/to/img.jpg") results[0].show() path = model.export(format="onnx") ``` Pretrained Visdrone weights can also be used for model inference ```python from vajra import Vajra model = Vajra("visdrone-best-vajra-v1-xlarge-det.pt") results = model("path/to/img.jpg") results[0].show() path = model.export(format="engine", device=0, half=True) ```Model Architectures
✅ VajraV1-det
✅ VajraV1-cls
✅ VajraV1-pose
✅ VajraV1-seg
✅ VajraV1-obb
✅ VajraV1-world
✅ VajraV1-DEYO-det
✅ VajraLiteV1-det
✅ VajraLiteV1-seg
✅ VajraLiteV1-obb
✅ VajraLiteV1-pose
✅ VajraLiteV1-cls
✅ VajraLiteV1-world
❌ VajraV1-DEYO-seg (Coming Soon!)
❌ VajraV1-DEYO-pose (Coming Soon!)
✅ SAM
✅ SAM2
✅ FastSAM
✅ MobileSAM
✅ EfficientNetV1
✅ EfficientNetV2
✅ VajraEffNetV1
✅ VajraEffNetV2
✅ ConvNeXtV1
✅ ConvNeXtV2
✅ ResNet
✅ ResNeSt
❌ ResNeXt (Coming Soon!)
❌ ResNetV2 (Coming Soon!)
✅ EdgeNeXt
✅ ME-NeSt
✅ VajraME-NeSt
✅ MixConvNeXt
❌ ViT (Coming Soon!)
❌ Swin (Coming Soon!)
❌ SwinV2 (Coming Soon!)
Tasks Supported
✅ detect
✅ smallobjdetect
✅ classify
✅ multilabel_classify
✅ pose
✅ obb
✅ segment
✅ world
Model Architecture Details
To be published
Acknowledgements
- https://github.com/ultralytics/ultralytics
- https://github.com/ultralytics/yolov5
- https://github.com/ouyanghaodong/DEYOv1.5
- https://github.com/WongKinYiu/yolov9
- https://github.com/meituan/YOLOv6
- https://github.com/huggingface/pytorch-image-models
- https://github.com/pytorch/vision
License
Vayuvahana Technologies Private Limited offers two licensing options:
AGPL-3.0 License: This is an OSI-approved open-source license for researchers for the purpose of promoting collaboration. See the LICENSE file for details.
Enterprise License: This license is designed for commercial use and enables integration of VayuAI software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your product requires embedding the software for commercial purposes or require access to more capable enterprise AI models in the future, reach out via Email.
Owner
- Name: Naman Makkar
- Login: NamanMakkar
- Kind: user
- Location: New York
- Company: Cornell Tech
- Repositories: 1
- Profile: https://github.com/NamanMakkar
MEng CS @ Cornell Tech
Citation (CITATION.cff)
cff-version: 1.2.0
title: Vayuvahana Technologies VayuAI
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Naman Balbir Singh
family-names: Makkar
affiliation: Vayuvahana Technologies Private Limited
orcid: 'https://orcid.org/0009-0006-0735-0523'
repository-code: 'https://github.com/NamanMakkar/VayuAI'
license: AGPL-3.0
version: 1.0.0
date-released: "2024-27-09"
GitHub Events
Total
- Release event: 1
- Watch event: 5
- Push event: 65
- Create event: 2
Last Year
- Release event: 1
- Watch event: 5
- Push event: 65
- Create event: 2
Dependencies
- matplotlib >=3.3.0
- opencv-python >=4.6.0
- pandas >=1.1.4
- pillow >=7.1.2
- psutil *
- py-cpuinfo *
- pyyaml >=5.3.1
- requests >=2.23.0
- scipy >=1.4.1
- seaborn >=0.11.0
- thop >=0.1.1
- torch >=1.8.0
- torchvision >=0.9.0
- tqdm >=4.64.0
- PyYAML ==6.0.1
- onnx ==1.14.0
- onnxruntime ==1.15.1
- onnxruntime-gpu ==1.18.0
- onnxsim ==0.4.36
- pycocotools ==2.0.7
- scipy ==1.13.0
- torch ==2.0.1
- torchvision ==0.15.2