https://github.com/cdcgov/forecasttools-py
A Python package for common pre- and post-processing operations done by CFA Predict for short term forecasting, nowcasting, and scenario modeling.
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.1%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
A Python package for common pre- and post-processing operations done by CFA Predict for short term forecasting, nowcasting, and scenario modeling.
Basic Info
Statistics
- Stars: 8
- Watchers: 9
- Forks: 2
- Open Issues: 20
- Releases: 0
Topics
Metadata Files
README.md
CFA Forecast Tools (Python)
Summary of forecasttools-py:
- A Python package.
- Primarily supports the Short Term Forecast’s team.
- Intended to support wider Real Time Monitoring branch operations.
- Has tools for pre- and post-processing.
- Conversion of
az.InferenceDataforecast to Hubverse format. - Addition of time and or dates to
az.InferenceData.
- Conversion of
Notes:
- This repository is a WORK IN PROGRESS.
- For the R version of this toolkit, see forecasttools.
- For CDC project expected to use
forecasttools-py, see pyrenew-hew.
A Tentative Utilities Diagram
``` mermaid %%{init: {"theme": "neutral", "themeVariables": { "fontFamily": "Iosevka", "fontSize": "25px", "lineColor": "#808b96", "arrowheadColor": "#808b96", "edgeStrokeWidth": "10px", "arrowheadLength": "20px"}}}%% flowchart TD A1[COVID-19 Data _from forecasttools_] --> A4[NumPyro Model] A2[Influenza Data _from forecasttools_] --> A4[NumPyro Model] A3[External Dataset] --> A4[NumPyro Model] A4[NumPyro Model] -->|_arviz.from_numpyro_| A5[Forecast As InferenceData Object wo/ Dates] A5[Forecast As InferenceData Object wo/ Dates] -->|_Add Dates To InferenceData_ - done| A6[InferenceData Object w/ Dates] A6[InferenceData Object w/ Dates] -->|_Convert To Tidy-Like Dataframe_ - done| A7[Polars Forecast Dataframe w/ Draws] A7[Polars Forecast Dataframe w/ Draws] -->|_Convert To Hubverse Formatted Dataframe_ - done| A8[FluSight Submission Dataframe] A7[Polars Forecast Dataframe w/ Draws] -->|_Convert To ScoringUtils Formatted Dataframe_ - in progress| A9[ScoringUtils DataFrame] A7[Polars Forecast Dataframe w/ Draws] -->|_Save_| A10[Parquet File] A8[FluSight Submission Dataframe] -->|_Save_| A11[Parquet File] A9[ScoringUtils DataFrame] -->|_Save_| A12[Parquet File] A8[FluSight Submission Dataframe] -->|_Convert To ScoringUtils Formatted Dataframe_ - in progress| A9[ScoringUtils DataFrame] A12[Parquet File] -->|_Get scores in R_| A13[Forecast Scores] A11[Parquet File] -->|_Model Forecast Hypothesis Testing_| A14[Model Comparison Report] B1[Pulled Parquet Hubverse Submissions] -->|_Model Forecast Hypothesis Testing_| A14[Model Comparison Report] linkStyle default stroke: #808b96 linkStyle default stroke-width: 2.0px ```Installation
Install forecasttools-py via:
pip3 install git+https://github.com/CDCgov/forecasttools-py@main
Vignettes
- Format Arviz Forecast Output For FluSight Submission
- Community Meeting Utilities Demonstration (2024-11-19)
- Creating InferenceData Objects and Using Forecasttools Datasets
Coming soon as webpages, once Issue 26 is completed.
Datasets
Within forecasttools-py, one finds several packaged datasets. These
datasets can aid with experimentation; some are directly necessary to
other utilities provided by forecasttools-py.
python
import forecasttools
Summary of datasets:
forecasttools.location_table- A Polars dataframe of location abbreviations, codes, and names for Hubverse formatted forecast submissions.
forecasttools.example_flusight_submission- An example Hubverse formatted influenza forecast submission (as a Polars dataframe) submitted to the FluSight Hub.
forecasttools.nhsn_hosp_COVID- A Polars dataframe of NHSN COVID hospital admissions data.
forecasttools.nhsn_hosp_flu- A Polars dataframe of NHSN influenza hospital admissions data.
forecasttools.nhsn_flu_forecast_wo_dates- An
az.InferenceDataobject containing a forecast made using NSHN influenza data for Texas.
- An
forecasttools.nhsn_flu_forecast_w_dates- An modified (with dates as coordinates)
az.InferenceDataobject containing a forecast made using NSHN influenza data for Texas.
- An modified (with dates as coordinates)
See below for more information on the datasets.
Location Table
The location table contains abbreviations, codes, extended names, and
populations for the jurisdictions of the United States that the FluSight
and COVID forecasting hubs require users to generate forecasts. The US
population value is the sum of all available states and territories
(some territories have null population values).
The location table is stored in forecasttools-py as a polars
dataframe and is accessed via:
python
loc_table = forecasttools.location_table
print(loc_table)
shape: (58, 5)
┌───────────────┬────────────┬─────────────────────────────┬────────────┬──────────┐
│ location_code ┆ short_name ┆ long_name ┆ population ┆ is_state │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ i64 ┆ bool │
╞═══════════════╪════════════╪═════════════════════════════╪════════════╪══════════╡
│ US ┆ US ┆ United States ┆ 334735155 ┆ false │
│ 01 ┆ AL ┆ Alabama ┆ 5024279 ┆ true │
│ 02 ┆ AK ┆ Alaska ┆ 733391 ┆ true │
│ 04 ┆ AZ ┆ Arizona ┆ 7151502 ┆ true │
│ 05 ┆ AR ┆ Arkansas ┆ 3011524 ┆ true │
│ … ┆ … ┆ … ┆ … ┆ … │
│ 66 ┆ GU ┆ Guam ┆ null ┆ false │
│ 69 ┆ MP ┆ Northern Mariana Islands ┆ null ┆ false │
│ 72 ┆ PR ┆ Puerto Rico ┆ 3285874 ┆ false │
│ 74 ┆ UM ┆ U.S. Minor Outlying Islands ┆ null ┆ false │
│ 78 ┆ VI ┆ U.S. Virgin Islands ┆ null ┆ false │
└───────────────┴────────────┴─────────────────────────────┴────────────┴──────────┘
Using ./forecasttools/data.py, the location table was created by
running the following:
python
make_census_dataset(
file_save_path=os.path.join(
os.getcwd(),
"location_table.csv"
),
)
United States
Calling forecasttools.united_states simply returns a Python list that
contains the 50 United States (United States itself is not included).
While quite simple, it’s to have this capability available in fewer
steps than through calling and selecting values from location_table.
python
united_states = forecasttools.united_states
print(united_states)
['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado', 'Connecticut', 'Delaware', 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyoming']
Example FluSight Hub Submission
The example FluSight submission comes from the following 2023-24 submission.
The example FluSight submission is stored in forecasttools-py as a
polars dataframe and is accessed via:
python
submission = forecasttools.example_flusight_submission
print(submission)
shape: (4_876, 8)
┌────────────┬────────────┬─────────┬────────────┬──────────┬────────────┬────────────┬────────────┐
│ reference_ ┆ target ┆ horizon ┆ target_end ┆ location ┆ output_typ ┆ output_typ ┆ value │
│ date ┆ --- ┆ --- ┆ _date ┆ --- ┆ e ┆ e_id ┆ --- │
│ --- ┆ str ┆ i64 ┆ --- ┆ str ┆ --- ┆ --- ┆ f64 │
│ str ┆ ┆ ┆ str ┆ ┆ str ┆ f64 ┆ │
╞════════════╪════════════╪═════════╪════════════╪══════════╪════════════╪════════════╪════════════╡
│ 2023-10-14 ┆ wk inc flu ┆ -1 ┆ 2023-10-07 ┆ 01 ┆ quantile ┆ 0.01 ┆ 7.670286 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ 2023-10-14 ┆ wk inc flu ┆ -1 ┆ 2023-10-07 ┆ 01 ┆ quantile ┆ 0.025 ┆ 9.968043 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ 2023-10-14 ┆ wk inc flu ┆ -1 ┆ 2023-10-07 ┆ 01 ┆ quantile ┆ 0.05 ┆ 12.022354 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ 2023-10-14 ┆ wk inc flu ┆ -1 ┆ 2023-10-07 ┆ 01 ┆ quantile ┆ 0.1 ┆ 14.497646 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ 2023-10-14 ┆ wk inc flu ┆ -1 ┆ 2023-10-07 ┆ 01 ┆ quantile ┆ 0.15 ┆ 16.119813 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ 2023-10-14 ┆ wk inc flu ┆ 2 ┆ 2023-10-28 ┆ US ┆ quantile ┆ 0.85 ┆ 2451.87489 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ 9 │
│ 2023-10-14 ┆ wk inc flu ┆ 2 ┆ 2023-10-28 ┆ US ┆ quantile ┆ 0.9 ┆ 2806.92858 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ 8 │
│ 2023-10-14 ┆ wk inc flu ┆ 2 ┆ 2023-10-28 ┆ US ┆ quantile ┆ 0.95 ┆ 3383.74799 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ │
│ 2023-10-14 ┆ wk inc flu ┆ 2 ┆ 2023-10-28 ┆ US ┆ quantile ┆ 0.975 ┆ 3940.39253 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ 6 │
│ 2023-10-14 ┆ wk inc flu ┆ 2 ┆ 2023-10-28 ┆ US ┆ quantile ┆ 0.99 ┆ 4761.75738 │
│ ┆ hosp ┆ ┆ ┆ ┆ ┆ ┆ 5 │
└────────────┴────────────┴─────────┴────────────┴──────────┴────────────┴────────────┴────────────┘
Using data.py, the example FluSight submission was created by running
the following:
python
get_and_save_flusight_submission(
file_save_path=os.path.join(
os.getcwd(),
"example_flusight_submission.csv"
),
)
NHSN COVID And Flu Hospital Admissions
NHSN hospital admissions fitting data for COVID and Flu is included in
forecasttools-py as well, for user experimentation.
This data:
- Is current as of
2024-04-27 - Comes from the website HealthData.gov COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries.
For influenza, the previous_day_admission_influenza_confirmed column
is retained and for COVID the
previous_day_admission_adult_covid_confirmed column is retained. As
can be seen in the example below, some early dates for each jurisdiction
do not have data.
The fitting data is stored in forecasttools-py as a polars dataframe
and is accessed via:
``` python
access COVID data
covidnhsndata = forecasttools.nhsnhospCOVID
access flu data
flunhsndata = forecasttools.nhsnhospflu
display flu data
print(flunhsndata) ```
shape: (81_713, 3)
┌───────┬────────────┬──────┐
│ state ┆ date ┆ hosp │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞═══════╪════════════╪══════╡
│ AK ┆ 2020-03-23 ┆ null │
│ AK ┆ 2020-03-24 ┆ null │
│ AK ┆ 2020-03-25 ┆ null │
│ AK ┆ 2020-03-26 ┆ null │
│ AK ┆ 2020-03-27 ┆ null │
│ … ┆ … ┆ … │
│ WY ┆ 2024-04-23 ┆ 1 │
│ WY ┆ 2024-04-24 ┆ 1 │
│ WY ┆ 2024-04-25 ┆ 0 │
│ WY ┆ 2024-04-26 ┆ 0 │
│ WY ┆ 2024-04-27 ┆ 0 │
└───────┴────────────┴──────┘
The data was created by placing a csv file called
NHSN_RAW_20240926.csv (the full NHSN dataset) into ./forecasttools/
and running, in data.py, the following:
``` python
generate COVID dataset
makenshnfittingdataset( dataset="COVID", nhsndatasetpath="NHSNRAW20240926.csv", filesavepath=os.path.join( os.getcwd(), "nhsnhosp_COVID.csv" ) )
generate flu dataset
makenshnfittingdataset( dataset="flu", nhsndatasetpath="NHSNRAW20240926.csv", filesavepath=os.path.join( os.getcwd(), "nhsnhosp_flu.csv" ) ) ```
Influenza Hospitalizations Forecast(s)
Two example forecasts stored in Arviz InferenceData objects are
included for vignettes and user experimentation. Both are 28 day
influenza hospital admissions forecasts for Texas made using a spline
regression model fitted to NHSN data between 2022-08-08 and 2022-12-08.
The only difference between the forecasts is that
example_flu_forecast_w_dates.nc has had dates added as its coordinates
(this is not a native Arviz feature).
The forecast idatas are accessed via:
``` python
idata with dates as coordinates
idatawdates = forecasttools.nhsnfluforecastwdates print(idatawdates) ```
Inference data with groups:
> posterior
> posterior_predictive
> log_likelihood
> sample_stats
> prior
> prior_predictive
> observed_data
``` python
show dates
print(idatawdates["observed_data"]["obs"]["obsdim0"][:15]) ```
<xarray.DataArray 'obs_dim_0' (obs_dim_0: 15)> Size: 120B
array(['2022-08-08T00:00:00.000000000', '2022-08-09T00:00:00.000000000',
'2022-08-10T00:00:00.000000000', '2022-08-11T00:00:00.000000000',
'2022-08-12T00:00:00.000000000', '2022-08-13T00:00:00.000000000',
'2022-08-14T00:00:00.000000000', '2022-08-15T00:00:00.000000000',
'2022-08-16T00:00:00.000000000', '2022-08-17T00:00:00.000000000',
'2022-08-18T00:00:00.000000000', '2022-08-19T00:00:00.000000000',
'2022-08-20T00:00:00.000000000', '2022-08-21T00:00:00.000000000',
'2022-08-22T00:00:00.000000000'], dtype='datetime64[ns]')
Coordinates:
* obs_dim_0 (obs_dim_0) datetime64[ns] 120B 2022-08-08 ... 2022-08-22
``` python
idata without dates as coordinates
idatawodates = forecasttools.nhsnfluforecastwodates print(idatawodates["observed_data"]["obs"]["obsdim0"][:20]) ```
<xarray.DataArray 'obs_dim_0' (obs_dim_0: 20)> Size: 160B
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19])
Coordinates:
* obs_dim_0 (obs_dim_0) int64 160B 0 1 2 3 4 5 6 7 ... 13 14 15 16 17 18 19
CDC Open Source Considerations
General disclaimer This repository was created for use by CDC programs to collaborate on public health related projects in support of the CDC mission. GitHub is not hosted by the CDC, but is a third party website used by CDC and its partners to share information and collaborate on software. CDC use of GitHub does not imply an endorsement of any one particular service, product, or enterprise.
Rules, Policy, And Collaboration
- [Open Practices](./rules-and-policies/open_practices.md) - [Rules of Behavior](./rules-and-policies/rules_of_behavior.md) - [Thanks and Acknowledgements](./rules-and-policies/thanks.md) - [Disclaimer](DISCLAIMER.md) - [Contribution Notice](CONTRIBUTING.md) - [Code of Conduct](./rules-and-policies/code-of-conduct.md)Public Domain Standard Notice
This repository constitutes a work of the United States Government and is not subject to domestic copyright protection under 17 USC § 105. This repository is in the public domain within the United States, and copyright and related rights in the work worldwide are waived through the [CC0 1.0 Universal public domain dedication](https://creativecommons.org/publicdomain/zero/1.0/). All contributions to this repository will be released under the CC0 dedication. By submitting a pull request you are agreeing to comply with this waiver of copyright interest.License Standard Notice
The repository utilizes code licensed under the terms of the Apache Software License and therefore is licensed under ASL v2 or later. This source code in this repository is free: you can redistribute it and/or modify it under the terms of the Apache Software License version 2, or (at your option) any later version. This source code in this repository is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Apache Software License for more details. You should have received a copy of the Apache Software License along with this program. If not, see http://www.apache.org/licenses/LICENSE-2.0.html The source code forked from other open source projects will inherit its license.Privacy Standard Notice
This repository contains only non-sensitive, publicly available data and information. All material and community participation is covered by the [Disclaimer](DISCLAIMER.md) and [Code of Conduct](code-of-conduct.md). For more information about CDC’s privacy policy, please visit [http://www.cdc.gov/other/privacy.html](https://www.cdc.gov/other/privacy.html).Contributing Standard Notice
Anyone is encouraged to contribute to the repository by [forking](https://help.github.com/articles/fork-a-repo) and submitting a pull request. (If you are new to GitHub, you might start with a [basic tutorial](https://help.github.com/articles/set-up-git).) By contributing to this project, you grant a world-wide, royalty-free, perpetual, irrevocable, non-exclusive, transferable license to all users under the terms of the [Apache Software License v2](http://www.apache.org/licenses/LICENSE-2.0.html) or later. All comments, messages, pull requests, and other submissions received through CDC including this GitHub page may be subject to applicable federal law, including but not limited to the Federal Records Act, and may be archived. Learn more atRecords Management Standard Notice
This repository is not a source of government records, but is a copy to increase collaboration and collaborative potential. All government records will be published through the [CDC web site](http://www.cdc.gov).Additional Standard Notices
Please refer to [CDC’s Template Repository](https://github.com/CDCgov/template) for more information about [contributing to this repository](https://github.com/CDCgov/template/blob/main/CONTRIBUTING.md), [public domain notices and disclaimers](https://github.com/CDCgov/template/blob/main/DISCLAIMER.md), and [code of conduct](https://github.com/CDCgov/template/blob/main/code-of-conduct.md).Owner
- Name: Centers for Disease Control and Prevention
- Login: CDCgov
- Kind: organization
- Email: data@cdc.gov
- Location: Atlanta, GA
- Website: http://open.cdc.gov/
- Twitter: CDCgov
- Repositories: 114
- Profile: https://github.com/CDCgov
CDC's collaborative software projects to protect America from health, safety, and security threats, both foreign and in the U.S.
Committers
Last synced: 10 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| AFg6K7h4fhy2 | 1****2 | 30 |
| Samuel Brand | 4****1 | 3 |
| sswanikcdc | 1****c | 1 |
| Dylan H. Morris | d****s | 1 |
Issues and Pull Requests
Last synced: 5 months ago
All Time
- Total issues: 50
- Total pull requests: 79
- Average time to close issues: 13 days
- Average time to close pull requests: 6 days
- Total issue authors: 4
- Total pull request authors: 8
- Average comments per issue: 0.8
- Average comments per pull request: 2.54
- Merged pull requests: 43
- Bot issues: 0
- Bot pull requests: 18
Past Year
- Issues: 50
- Pull requests: 79
- Average time to close issues: 13 days
- Average time to close pull requests: 6 days
- Issue authors: 4
- Pull request authors: 8
- Average comments per issue: 0.8
- Average comments per pull request: 2.54
- Merged pull requests: 43
- Bot issues: 0
- Bot pull requests: 18
Top Authors
Issue Authors
- AFg6K7h4fhy2 (37)
- dylanhmorris (7)
- SamuelBrand1 (4)
- damonbayer (2)
Pull Request Authors
- AFg6K7h4fhy2 (42)
- dependabot[bot] (15)
- SamuelBrand1 (6)
- dylanhmorris (6)
- damonbayer (4)
- pre-commit-ci[bot] (3)
- gvegayon (2)
- sbidari (1)