Inscriptis - A Python-based HTML to text conversion library optimized for knowledge extraction from the Web

Inscriptis - A Python-based HTML to text conversion library optimized for knowledge extraction from the Web - Published in JOSS (2021)

https://github.com/weblyzard/inscriptis

Science Score: 93.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 8 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

client converter html html2text library python web-service

Keywords from Contributors

cryptocurrencies mesh

Scientific Fields

Computer Science Computer Science - 34% confidence
Last synced: 4 months ago · JSON representation

Repository

A python based HTML to text conversion library, command line client and Web service.

Basic Info
  • Host: GitHub
  • Owner: weblyzard
  • License: apache-2.0
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 2.29 MB
Statistics
  • Stars: 322
  • Watchers: 10
  • Forks: 34
  • Open Issues: 7
  • Releases: 29
Topics
client converter html html2text library python web-service
Created almost 10 years ago · Last pushed 5 months ago
Metadata Files
Readme Contributing License Authors

README.rst

==================================================================================
inscriptis -- HTML to text conversion library, command line client and Web service
==================================================================================

.. image:: https://img.shields.io/pypi/pyversions/inscriptis   
   :target: https://badge.fury.io/py/inscriptis
   :alt: Supported python versions

.. image:: https://codecov.io/gh/weblyzard/inscriptis/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/weblyzard/inscriptis/
   :alt: Coverage

.. image:: https://github.com/weblyzard/inscriptis/actions/workflows/python-package.yml/badge.svg
   :target: https://github.com/weblyzard/inscriptis/actions/workflows/python-package.yml
   :alt: Build status

.. image:: https://readthedocs.org/projects/inscriptis/badge/?version=latest
   :target: https://inscriptis.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation status

.. image:: https://badge.fury.io/py/inscriptis.svg
   :target: https://badge.fury.io/py/inscriptis
   :alt: PyPI version

.. image:: https://pepy.tech/badge/inscriptis
   :target: https://pepy.tech/project/inscriptis
   :alt: PyPI downloads

.. image:: https://joss.theoj.org/papers/10.21105/joss.03557/status.svg
   :target: https://doi.org/10.21105/joss.03557


A python based HTML to text conversion library, command line client and Web
service with support for **nested tables**, a **subset of CSS** and optional
support for providing an **annotated output**. 

Inscriptis is particularly well suited for applications that require high-performance, high-quality (i.e., layout-aware) text representations of HTML content, and will aid knowledge extraction and data science tasks conducted upon Web data.

Please take a look at the
`Rendering `_
document for a demonstration of inscriptis' conversion quality.

A Java port of inscriptis 1.x has been published by
`x28 `_.

This document provides a short introduction to Inscriptis. 

- The full documentation is built automatically and published on `Read the Docs `_. 
- If you are interested in a more general overview on the topic of *text extraction from HTML*, this `blog post on different HTML to text conversion approaches, and criteria for selecting them `_ might be interesting to you.

.. contents:: Table of contents

Statement of need - why inscriptis?
===================================

1. Inscriptis provides a **layout-aware** conversion of HTML that more closely resembles the rendering obtained from standard Web browsers and, therefore, better preserves the spatial arrangement of text elements. 

   Conversion quality becomes a factor once you need to move beyond simple HTML snippets. Non-specialized approaches and less sophisticated libraries do not correctly interpret HTML semantics and, therefore, fail to properly convert constructs such as itemizations, enumerations, and tables.

   Beautiful Soup's ``get_text()`` function, for example, converts the following HTML enumeration to the string ``firstsecond``.

   .. code-block:: HTML
   
      
  • first
  • second
    • Inscriptis, in contrast, not only returns the correct output .. code-block:: * first * second but also supports much more complex constructs such as nested tables and also interprets a subset of HTML (e.g., ``align``, ``valign``) and CSS (e.g., ``display``, ``white-space``, ``margin-top``, ``vertical-align``, etc.) attributes that determine the text alignment. Any time the spatial alignment of text is relevant (e.g., for many knowledge extraction tasks, the computation of word embeddings and language models, and sentiment analysis) an accurate HTML to text conversion is essential. 2. Inscriptis supports `annotation rules <#annotation-rules>`_, i.e., user-provided mappings that allow for annotating the extracted text based on structural and semantic information encoded in HTML tags and attributes used for controlling structure and layout in the original HTML document. These rules might be used to - provide downstream knowledge extraction components with additional information that may be leveraged to improve their respective performance. - assist manual document annotation processes (e.g., for qualitative analysis or gold standard creation). ``Inscriptis`` supports multiple export formats such as XML, annotated HTML and the JSONL format that is used by the open source annotation tool `doccano `_. - enabling the use of ``Inscriptis`` for tasks such as content extraction (i.e., extract task-specific relevant content from a Web page) which rely on information on the HTML document's structure. Installation ============ At the command line:: $ pip install inscriptis Or, if you don't have pip installed:: $ easy_install inscriptis Python library ============== Embedding inscriptis into your code is easy, as outlined below: .. code-block:: python import urllib.request from inscriptis import get_text url = "https://www.fhgr.ch" html = urllib.request.urlopen(url).read().decode('utf-8') text = get_text(html) print(text) Standalone command line client ============================== The command line client converts HTML files or text retrieved from Web pages to the corresponding text representation. Command line parameters ----------------------- The inscript command line client supports the following parameters:: usage: inscript [-h] [-o OUTPUT] [-e ENCODING] [-i] [-d] [-l] [-a] [-r ANNOTATION_RULES] [-p POSTPROCESSOR] [--indentation INDENTATION] [--table-cell-separator TABLE_CELL_SEPARATOR] [-v] [input] Convert the given HTML document to text. positional arguments: input Html input either from a file or a URL (default:stdin). optional arguments: -h, --help show this help message and exit -o OUTPUT, --output OUTPUT Output file (default:stdout). -e ENCODING, --encoding ENCODING Input encoding to use (default:utf-8 for files; detected server encoding for Web URLs). -i, --display-image-captions Display image captions (default:false). -d, --deduplicate-image-captions Deduplicate image captions (default:false). -l, --display-link-targets Display link targets (default:false). -a, --display-anchor-urls Display anchor URLs (default:false). -r ANNOTATION_RULES, --annotation-rules ANNOTATION_RULES Path to an optional JSON file containing rules for annotating the retrieved text. -p POSTPROCESSOR, --postprocessor POSTPROCESSOR Optional component for postprocessing the result (html, surface, xml). --indentation INDENTATION How to handle indentation (extended or strict; default: extended). --table-cell-separator TABLE_CELL_SEPARATOR Separator to use between table cells (default: three spaces). -v, --version display version information HTML to text conversion ----------------------- convert the given page to text and output the result to the screen:: $ inscript https://www.fhgr.ch convert the file to text and save the output to fhgr.txt:: $ inscript fhgr.html -o fhgr.txt convert the file using strict indentation (i.e., minimize indentation and extra spaces) and save the output to fhgr-layout-optimized.txt:: $ inscript --indentation strict fhgr.html -o fhgr-layout-optimized.txt convert HTML provided via stdin and save the output to output.txt:: $ echo "

      Make it so!

      " | inscript -o output.txt HTML to annotated text conversion --------------------------------- convert and annotate HTML from a Web page using the provided annotation rules. Download the example `annotation-profile.json `_ and save it to your working directory:: $ inscript https://www.fhgr.ch -r annotation-profile.json The annotation rules are specified in `annotation-profile.json`: .. code-block:: json { "h1": ["heading", "h1"], "h2": ["heading", "h2"], "b": ["emphasis"], "div#class=toc": ["table-of-contents"], "#class=FactBox": ["fact-box"], "#cite": ["citation"] } The dictionary maps an HTML tag and/or attribute to the annotations inscriptis should provide for them. In the example above, for instance, the tag ``h1`` yields the annotations ``heading`` and ``h1``, a ``div`` tag with a ``class`` that contains the value ``toc`` results in the annotation ``table-of-contents``, and all tags with a ``cite`` attribute are annotated with ``citation``. Given these annotation rules the HTML file .. code-block:: HTML

      Chur

      Chur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley. yields the following JSONL output .. code-block:: json {"text": "Chur\n\nChur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley.", "label": [[0, 4, "heading"], [0, 4, "h1"], [6, 10, "emphasis"]]} The provided list of labels contains all annotated text elements with their start index, end index and the assigned label. Annotation postprocessors ------------------------- Annotation postprocessors enable the post processing of annotations to formats that are suitable for your particular application. Post processors can be specified with the ``-p`` or ``--postprocessor`` command line argument:: $ inscript https://www.fhgr.ch \ -r ./examples/annotation/annotation-profile.json \ -p surface Output: .. code-block:: json {"text": " Chur\n\n Chur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley.", "label": [[0, 6, "heading"], [8, 14, "emphasis"]], "tag": "Chur\n\nChur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley."} Currently, inscriptis supports the following postprocessors: - surface: returns a list of mapping between the annotation's surface form and its label:: [ ['heading', 'Chur'], ['emphasis': 'Chur'] ] - xml: returns an additional annotated text version:: Chur Chur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley. - html: creates an HTML file which contains the converted text and highlights all annotations as outlined below: .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/paper/images/annotations.png :align: left :alt: Annotations extracted from the Wikipedia entry for Chur with the ``--postprocess html`` postprocessor. Snippet of the rendered HTML file created with the following command line options and annotation rules: .. code-block:: bash inscript --annotation-rules ./wikipedia.json \ --postprocessor html \ https://en.wikipedia.org/wiki/Chur Annotation rules encoded in the ``wikipedia.json`` file: .. code-block:: json { "h1": ["heading"], "h2": ["heading"], "h3": ["subheading"], "h4": ["subheading"], "h5": ["subheading"], "i": ["emphasis"], "b": ["bold"], "table": ["table"], "th": ["tableheading"], "a": ["link"] } Web Service =========== A FastAPI-based Web Service that uses Inscriptis for translating HTML pages to plain text. Run the Web Service on your host system --------------------------------------- Install the optional feature `web-service` for inscriptis:: $ pip install inscriptis[web-service] Start the Inscriptis Web service with the following command:: $ uvicorn inscriptis.service.web:app --port 5000 --host 127.0.0.1 Run the Web Service with Docker ------------------------------- The docker definition can be found `here `_:: $ docker pull ghcr.io/weblyzard/inscriptis:latest $ docker run -n inscriptis ghcr.io/weblyzard/inscriptis:latest Run as Kubernetes Deployment -------------------------------------- The helm chart for deployment on a kubernetes cluster is located in the `inscriptis-helm repository `_. Use the Web Service ------------------- The Web services receives the HTML file in the request body and returns the corresponding text. The file's encoding needs to be specified in the ``Content-Type`` header (``UTF-8`` in the example below):: $ curl -X POST -H "Content-Type: text/html; encoding=UTF8" \ --data-binary @test.html http://localhost:5000/get_text The service also supports a version call:: $ curl http://localhost:5000/version Example annotation profiles =========================== The following section provides a number of example annotation profiles illustrating the use of Inscriptis' annotation support. The examples present the used annotation rules and an image that highlights a snippet with the annotated text on the converted web page, which has been created using the HTML postprocessor as outlined in Section `annotation postprocessors <#annotation-postprocessors>`_. Wikipedia tables and table metadata ----------------------------------- The following annotation rules extract tables from Wikipedia pages, and annotate table headings that are typically used to indicate column or row headings. .. code-block:: json { "table": ["table"], "th": ["tableheading"], "caption": ["caption"] } The figure below outlines an example table from Wikipedia that has been annotated using these rules. .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/wikipedia-chur-table-annotation.png :alt: Table and table metadata annotations extracted from the Wikipedia entry for Chur. References to entities, missing entities and citations from Wikipedia --------------------------------------------------------------------- This profile extracts references to Wikipedia entities, missing entities and citations. Please note that the profile isn't perfect, since it also annotates ``[ edit ]`` links. .. code-block:: json { "a#title": ["entity"], "a#class=new": ["missing"], "class=reference": ["citation"] } The figure shows entities and citations that have been identified on a Wikipedia page using these rules. .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/wikipedia-chur-entry-annotation.png :alt: Metadata on entries, missing entries and citations extracted from the Wikipedia entry for Chur. Posts and post metadata from the XDA developer forum ---------------------------------------------------- The annotation rules below, extract posts with metadata on the post's time, user and the user's job title from the XDA developer forum. .. code-block:: json { "article#class=message-body": ["article"], "li#class=u-concealed": ["time"], "#itemprop=name": ["user-name"], "#itemprop=jobTitle": ["user-title"] } The figure illustrates the annotated metadata on posts from the XDA developer forum. .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/xda-posts-annotation.png :alt: Posts and post metadata extracted from the XDA developer forum. Code and metadata from Stackoverflow pages ------------------------------------------ The rules below extracts code and metadata on users and comments from Stackoverflow pages. .. code-block:: json { "code": ["code"], "#itemprop=dateCreated": ["creation-date"], "#class=user-details": ["user"], "#class=reputation-score": ["reputation"], "#class=comment-date": ["comment-date"], "#class=comment-copy": ["comment-comment"] } Applying these rules to a Stackoverflow page on text extraction from HTML yields the following snippet: .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/stackoverflow-code-annotation.png :alt: Code and metadata from Stackoverflow pages. Advanced topics =============== Annotated text -------------- Inscriptis can provide annotations alongside the extracted text which allows downstream components to draw upon semantics that have only been available in the original HTML file. The extracted text and annotations can be exported in different formats, including the popular JSONL format which is used by `doccano `_. Example output: .. code-block:: json {"text": "Chur\n\nChur is the capital and largest town of the Swiss canton of the Grisons and lies in the Grisonian Rhine Valley.", "label": [[0, 4, "heading"], [0, 4, "h1"], [6, 10, "emphasis"]]} The output above is produced, if inscriptis is run with the following annotation rules: .. code-block:: json { "h1": ["heading", "h1"], "b": ["emphasis"], } The code below demonstrates how inscriptis' annotation capabilities can be used within a program: .. code-block:: python import urllib.request from inscriptis import get_annotated_text from inscriptis.model.config import ParserConfig url = "https://www.fhgr.ch" html = urllib.request.urlopen(url).read().decode('utf-8') rules = {'h1': ['heading', 'h1'], 'h2': ['heading', 'h2'], 'b': ['emphasis'], 'table': ['table'] } output = get_annotated_text(html, ParserConfig(annotation_rules=rules) print("Text:", output['text']) print("Annotations:", output['label']) Fine-tuning the HTML rendering ------------------------------ Inscriptis provides the ``ParserConfig`` class to fine-tune the HTML rendering (`see documentation `_). It allows modifying the interpretation of HTML-tags and setting parameters that control the rendering of anchors, captions, images and links. 1. **Firefox-like whitespace handling:** Use the more standard-conform `strict` CSS_PROFILE to render the page. (``
      `` and ```` do not add whitespaces in the `strict` profile. Many text-based browsers such as Lynx and ``inscript``, add whitespaces per default to reduce the likelihood of words getting glued together). .. code-block:: python from lxml.html import fromstring from inscriptis import Inscriptis from inscriptis.css_profiles import CSS_PROFILES from inscriptis.model.config import ParserConfig # create a ParserConfig that uses the strict CSS rendering profile css = CSS_PROFILES['strict'] config = ParserConfig(css=css) html_tree = fromstring(html) parser = Inscriptis(html_tree, config) text = parser.get_text() 2. **Firefox-like whitespace handling and fine-tuning of link handling:** Use the strict profile together with inline links and anchor URLs. .. code-block:: python from lxml.html import fromstring from inscriptis import Inscriptis from inscriptis.css_profiles import CSS_PROFILES from inscriptis.model.config import ParserConfig # uses the strict CSS rendering profile and fine-tune link handling. css = CSS_PROFILES['strict'] config = ParserConfig(css=css, display_links=True, display_anchors=True) html_tree = fromstring(html) parser = Inscriptis(html_tree, config) text = parser.get_text() 3. **Overwriting the default CSS definition:** inscriptis uses CSS definitions that are maintained in ``inscriptis.css_profiles_CSS_PROFILES`` for rendering HTML tags. You can override these definitions (and therefore change the rendering) as outlined below: .. code-block:: python from lxml.html import fromstring from inscriptis import Inscriptis from inscriptis.css_profiles import CSS_PROFILES from inscriptis.html_properties import Display from inscriptis.model.config import ParserConfig from inscriptis.model.html_element import HtmlElement # Create a custom CSS based on the default style sheet and change the # rendering of `div` and `span` elements. css = CSS_PROFILES['strict'].copy() css['div'] = HtmlElement(display=Display.block, padding=2) css['span'] = HtmlElement(prefix=' ', suffix=' ') html_tree = fromstring(html) # create a parser using a custom css config = ParserConfig(css=css) parser = Inscriptis(html_tree, config) text = parser.get_text() 4. **Ignore elements during parsing:** Overwriting the default CSS profile also allows changing the rendering of selected elements. The snippet below, for example, removes forms from the parsed text by setting the definition of the ``form`` tag to ``Display.none``. .. code-block:: python from inscriptis import get_text from inscriptis.css_profiles import CSS_PROFILES, HtmlElement from inscriptis.html_properties import Display from inscriptis.model.config import ParserConfig # create a custom CSS based on the default style sheet and change the # rendering of `div` and `span` elements css = CSS_PROFILES['strict'].copy() css['form'] = HtmlElement(display=Display.none) # create a parser configuration using a custom css html = """First line.
      User data


      """ config = ParserConfig(css=css) text = get_text(html, config) print(text) Custom HTML tag handling ------------------------ If the fine-tuning options discussed above are not sufficient, you may even override Inscriptis' handling of start and end tags as outlined below: .. code-block:: python from inscriptis import ParserConfig from inscriptis.html_engine import Inscriptis from inscriptis.model.tag import CustomHtmlTagHandlerMapping my_mapping = CustomHtmlTagHandlerMapping( start_tag_mapping={'a': my_handle_start_a}, end_tag_mapping={'a': my_handle_end_a} ) inscriptis = Inscriptis(html_tree, ParserConfig(custom_html_tag_handler_mapping=my_mapping)) text = inscriptis.get_text() In the example the standard HTML handlers for the ``a`` tag are overwritten with custom versions (i.e., ``my_handle_start_a`` and ``my_handle_end_a``). You may define custom handlers for any tag, regardless of whether it already exists in the standard mapping. Please refer to `custom-html-handling.py `_ for a working example. The standard HTML tag handlers can be found in the `inscriptis.model.tag `_ package. Optimizing memory consumption ----------------------------- Inscriptis uses the Python lxml library which prefers to reuse memory rather than release it to the operating system. This behavior might lead to an increased memory consumption, if you use inscriptis within a Web service that parses very complex HTML pages. The following code mitigates this problem on Unix systems by manually forcing lxml to release the allocated memory: .. code-block:: python import ctypes def trim_memory() -> int: libc = ctypes.CDLL("libc.so.6") return libc.malloc_trim(0) Citation ======== There is a `Journal of Open Source Software `_ `paper `_ you can cite for Inscriptis: .. code-block:: bibtex @article{Weichselbraun2021, doi = {10.21105/joss.03557}, url = {https://doi.org/10.21105/joss.03557}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {66}, pages = {3557}, author = {Albert Weichselbraun}, title = {Inscriptis - A Python-based HTML to text conversion library optimized for knowledge extraction from the Web}, journal = {Journal of Open Source Software} } Changelog ========= A full list of changes can be found in the `release notes `_.

Owner

  • Name: webLyzard technology
  • Login: weblyzard
  • Kind: organization

JOSS Publication

Inscriptis - A Python-based HTML to text conversion library optimized for knowledge extraction from the Web
Published
October 16, 2021
Volume 6, Issue 66, Page 3557
Authors
Albert Weichselbraun ORCID
Swiss Institute for Information Science, University of Applied Sciences of the Grisons, Pulvermühlestrasse 57, Chur, Switzerland
Editor
Sebastian Benthall ORCID
Tags
web mining knowledge extraction text conversion gold standard creation annotated text output

GitHub Events

Total
  • Create event: 4
  • Release event: 2
  • Issues event: 7
  • Watch event: 41
  • Delete event: 1
  • Issue comment event: 6
  • Push event: 16
  • Pull request event: 6
  • Fork event: 5
Last Year
  • Create event: 4
  • Release event: 2
  • Issues event: 7
  • Watch event: 41
  • Delete event: 1
  • Issue comment event: 6
  • Push event: 16
  • Pull request event: 6
  • Fork event: 5

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 527
  • Total Committers: 9
  • Avg Commits per committer: 58.556
  • Development Distribution Score (DDS): 0.082
Past Year
  • Commits: 43
  • Committers: 2
  • Avg Commits per committer: 21.5
  • Development Distribution Score (DDS): 0.023
Top Committers
Name Email Commits
Albert Weichselbraun a****t@w****t 484
Philipp Kuntschik 9****k 20
k3njiy k****y@g****m 7
dependabot[bot] 4****] 5
max m****l@g****m 3
Rebecca Sutton Koeser r****r 3
k3njiy k****y 2
fabian y****u@e****m 2
Nilanjan De n****e@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 39
  • Total pull requests: 61
  • Average time to close issues: 2 months
  • Average time to close pull requests: 5 days
  • Total issue authors: 29
  • Total pull request authors: 6
  • Average comments per issue: 1.87
  • Average comments per pull request: 0.33
  • Merged pull requests: 53
  • Bot issues: 0
  • Bot pull requests: 10
Past Year
  • Issues: 5
  • Pull requests: 7
  • Average time to close issues: 3 days
  • Average time to close pull requests: 12 minutes
  • Issue authors: 5
  • Pull request authors: 2
  • Average comments per issue: 0.6
  • Average comments per pull request: 0.29
  • Merged pull requests: 7
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • dgtlmoon (5)
  • AlbertWeichselbraun (4)
  • crtnx (2)
  • sandrohoerler (2)
  • rlskoeser (2)
  • brycepg (1)
  • Alexei-WLU (1)
  • rogerwaldvogel (1)
  • nslpls (1)
  • ThomasArtin (1)
  • hadifar (1)
  • probavee (1)
  • ShakedAharonn (1)
  • rprots (1)
  • emmggi (1)
Pull Request Authors
  • AlbertWeichselbraun (44)
  • dependabot[bot] (10)
  • PhilippKuntschik (6)
  • n1lanjan (2)
  • maxgoebel (1)
  • rlskoeser (1)
Top Labels
Issue Labels
enhancement (2) Parsing (2) bug (1) Code quality (1) documentation (1)
Pull Request Labels
dependencies (10) github_actions (6) docker (4) documentation (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 590,127 last-month
  • Total docker downloads: 51,181
  • Total dependent packages: 10
  • Total dependent repositories: 81
  • Total versions: 31
  • Total maintainers: 3
pypi.org: inscriptis

inscriptis - HTML to text converter.

  • Versions: 31
  • Dependent Packages: 10
  • Dependent Repositories: 81
  • Downloads: 590,127 Last month
  • Docker Downloads: 51,181
Rankings
Dependent packages count: 1.1%
Downloads: 1.3%
Docker downloads count: 1.4%
Dependent repos count: 1.7%
Average: 3.1%
Stargazers count: 5.1%
Forks count: 8.2%
Maintainers (3)
Last synced: 4 months ago

Dependencies

docs/requirements.txt pypi
  • lxml *
  • myst_parser *
  • requests *
.github/workflows/codeql-analysis.yml actions
  • actions/checkout v3 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/autobuild v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/create-container.yml actions
  • actions/checkout v3 composite
  • docker/build-push-action v3 composite
  • docker/login-action v2 composite
  • docker/setup-buildx-action v2 composite
.github/workflows/helm-release.yaml actions
  • peter-evans/repository-dispatch v2 composite
.github/workflows/python-package.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
Dockerfile docker
  • python 3.11-slim-bullseye build
docker-compose.yml docker
pyproject.toml pypi
  • fastapi ^0.109.0
  • lxml >=4.9.3
  • python ^3.8 || ^3.9 || ^3.10 || ^3.11 || ^3.12
  • requests >=2.31.0
  • uvicorn ^0.25.0