https://github.com/cedrickchee/stargan-tensorflow
Simple Tensorflow implementation of StarGAN (CVPR 2018 Oral)
Science Score: 10.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.9%) to scientific vocabulary
Keywords
celeba-dataset
computer-vision
generative-adversarial-network
image-to-image-translation
stargan
tensorflow-models
Last synced: 5 months ago
·
JSON representation
Repository
Simple Tensorflow implementation of StarGAN (CVPR 2018 Oral)
Basic Info
Statistics
- Stars: 1
- Watchers: 3
- Forks: 1
- Open Issues: 0
- Releases: 0
Fork of taki0112/StarGAN-Tensorflow
Topics
celeba-dataset
computer-vision
generative-adversarial-network
image-to-image-translation
stargan
tensorflow-models
Created over 7 years ago
· Last pushed over 7 years ago
https://github.com/cedrickchee/StarGAN-Tensorflow/blob/master/
-------------------------------------------------------------------------------- ## Overview This project is fork of TensorFlow implementation of [StarGAN](https://arxiv.org/abs/1711.09020). StarGAN is a unified Generative Adversarial Networks (GANs) for multi-domain image-to-image translation. What this means is, StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator. You can take a look at the demo video for StarGAN [here](https://www.youtube.com/watch?v=EYjdLppmERE). ## Requirements * Tensorflow 1.8 * Python 3.6 ## Usage ### Downloading the dataset ```python > python download.py celebA ``` ``` dataset celebA train 000001.jpg 000002.jpg ... test (It is not celebA) a.jpg (The test image that you wanted) b.png ... list_attr_celeba.txt (For attribute information) ``` ### Train * python main.py --phase train ### Test * python main.py --phase test * The celebA test image and the image you wanted run simultaneously ### Pretrained model * Download [checkpoint for 128x128](https://drive.google.com/open?id=1ezwtU1O_rxgNXgJaHcAynVX8KjMt0Ua-) ## Summary  ## Results (128x128, wgan-gp) ### Women  ### Men  ## Reference * [StarGAN paper](https://arxiv.org/abs/1711.09020) * [Author pytorch code](https://github.com/yunjey/StarGAN) ## Author Junho Kim
Owner
- Name: Cedric Chee
- Login: cedrickchee
- Kind: user
- Location: PID 1
- Company: InvictusByte
- Website: https://cedricchee.com
- Twitter: cedric_chee
- Repositories: 227
- Profile: https://github.com/cedrickchee
Lead Software Engineer | LLMs | full stack Go/JS dev, backend | product dev @ startups | 🧑🎓 CompSci | alumni: fast.ai, Antler.co
