https://github.com/chenhongyiyang/egoposeformer

[ECCV 2024] EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation

https://github.com/chenhongyiyang/egoposeformer

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.7%) to scientific vocabulary

Keywords

eccv2024 egocentric-vision human-pose-estimation pose-estimation
Last synced: 5 months ago · JSON representation

Repository

[ECCV 2024] EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation

Basic Info
  • Host: GitHub
  • Owner: ChenhongyiYang
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 1.07 MB
Statistics
  • Stars: 8
  • Watchers: 1
  • Forks: 0
  • Open Issues: 1
  • Releases: 0
Topics
eccv2024 egocentric-vision human-pose-estimation pose-estimation
Created over 1 year ago · Last pushed 10 months ago
Metadata Files
Readme License

README.md

EgoPoseFormer

This repository contains the official PyTorch implementation of our paper:

EgoPoseFormer: A Simple Baseline for Egocentric 3D Human Pose Estimation, Chenhongyi Yang, Anastasia Tkach, Shreyas Hampali, Linguang Zhang, Elliot J. Crowley, Cem Keskin. ECCV 2024.

Usage

Environment Setup

```shell conda create -n egoposeformer python=3.10 -y source activate egoposeformer

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html pip install pytorch-lightning==2.1.0 pip install numba==0.56.4 pip install numpy==1.23.5 pip install mmcv-full==1.6.0

git clone https://github.com/ChenhongyiYang/egoposeformer.git cd EgoPoseFormer pip install -e . ```

Dataset Setup

We provide support for our main dataset UnrealEgo. Please refer to its official instruction to download the dataset. Specifically, you only need to download the UnrealEgoData_impl split. You also need to download pelvis_pos.pkl, which is extracted from the UnrealEgo meta data, for computing 3D to 2D projection. The file structures should be: EgoPoseFormer |-- configs |-- pose_estimation |-- ... |-- data | |-- unrealego | | |-- unrealego_impl | | | |-- ArchVisInterior_ArchVis_RT | | | |-- ... | | |-- pelvis_pos.pkl | | |-- train.txt | | |-- validation.txt | | |-- test.txt

Training and Testing

You can easily run an experiments using the following commands: ```shell

train

python run.py fit --config $CONFIG

test

python run.py test --config $CONFIG --ckpt_path $PATH For example, you can run a full UnrealEgo experiment by: shell

2D heatmap pre-training

python run.py fit --config ./configs/unrealegor18heatmap.yaml

training EgoPoseFormer

Note: You will need to put the pre-trained encoder path to

the encoder_pretrained entry in the config file

python run.py fit --config ./configs/unrealegor18pose3d.yaml

testing EgoPoseFormer

python run.py test --config ./configs/unrealegor18pose3d.yaml --ckpt_path path/to/ckpt ```

Results

| Backbone | MPJPE | PA-MPJPE | Config | Weights | |:---------:|:-----:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:| | ResNet-18 | 34.5 | 33.4 | Pre-train / Pose | Link |

Note: The numbers are measured using newly trained models, so they are slightly different from the numbers reported in the paper.

Citation

@inproceedings{yang2024egoposeformer, title={EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation}, author={Yang, Chenhongyi and Tkach, Anastasia and Hampali, Shreyas and Zhang, Linguang and Crowley, Elliot J and Keskin, Cem}, journal={European conference on computer vision}, year={2024}, organization={Springer} }

Acknowledgement

This codebase is partially inspired by the UnrealEgo implementation.

Owner

  • Name: Chenhongyi Yang
  • Login: ChenhongyiYang
  • Kind: user
  • Location: Zurich, Switzerland
  • Company: Meta

Research Scientist at Meta Reality Labs

GitHub Events

Total
  • Issues event: 4
  • Watch event: 5
  • Issue comment event: 5
  • Push event: 1
  • Fork event: 1
Last Year
  • Issues event: 4
  • Watch event: 5
  • Issue comment event: 5
  • Push event: 1
  • Fork event: 1

Dependencies

setup.py pypi