https://github.com/chenyangkang/fasta2codeml

A codeml (PAML package) wrapper to make life easier. Dummy input unaligned multi-species fasta file (a single gene), and output codeml result.

https://github.com/chenyangkang/fasta2codeml

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.6%) to scientific vocabulary

Keywords

codeml ecology molecular-evolution natural-selection paml selection
Last synced: 5 months ago · JSON representation

Repository

A codeml (PAML package) wrapper to make life easier. Dummy input unaligned multi-species fasta file (a single gene), and output codeml result.

Basic Info
  • Host: GitHub
  • Owner: chenyangkang
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 1.45 MB
Statistics
  • Stars: 3
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
codeml ecology molecular-evolution natural-selection paml selection
Created almost 3 years ago · Last pushed about 1 year ago
Metadata Files
Readme License

README.md

Fasta2Codeml

A codeml (PAML package) wrapper to make life easier. Dummy input unaligned multi-species fasta file (a single gene), and output codeml result.

Prerequisites

  1. Codeml (PAML version 4.10.6)
  2. MACSE (.jar form)
  3. MUSCLE
  4. RAXML

  5. biopython (v1.81, python package)

  6. newick (v1.9.0, python package)

must be installed beforehand

Installation

Simply add ./script to your environment

Input data

  1. A single gene fasta sequence file (multi-species, not aligned).
  2. A text file which indicate the foreground species. One species each line.

Example

cd to example/test_space/

Change the absolute path in the command lines below to to your path.

For single fasta file mode

type: ``` Fasta2Codeml.py \ --outdir /beegfs/store4/chenyangkang/DEV/Fasta2Codeml/example/testspacesinglegene \ --projectname Simpletest \ --foregroundfile /beegfs/store4/chenyangkang/DEV/Fasta2Codeml/example/foreground.txt \ --fasta /beegfs/store4/chenyangkang/DEV/Fasta2Codeml/example/singlegene/CLOCK.fasta \ --muscle /beegfs/store4/chenyangkang/software/ParaAT2.0/muscle \ --macse /beegfs/store4/chenyangkang/software/macsev2.07.jar \ --raxml /beegfs/store4/chenyangkang/software/standard-RAxML/raxml \ --codeml /beegfs/store4/chenyangkang/miniconda3/bin/codeml \ --boostrap 10 \ --codonfrac 0.5 \ --sp_frac 0.5

```

For multi-file model (multi-cds file mode):

``` Fasta2Codeml.py \ --outdir /beegfs/store4/chenyangkang/DEV/Fasta2Codeml/example/testspacemulticds \ --projectname Simplemultitest \ --foregroundfile /beegfs/store4/chenyangkang/DEV/Fasta2Codeml/example/foreground.txt \ --multifile \ --multifilelist cdslist.txt \ --muscle /beegfs/store4/chenyangkang/software/ParaAT2.0/muscle \ --macse /beegfs/store4/chenyangkang/software/macsev2.07.jar \ --raxml /beegfs/store4/chenyangkang/software/standard-RAxML/raxml \ --codeml /beegfs/store4/chenyangkang/miniconda3/bin/codeml \ --boostrap 10 \ --codonfrac 0.5 \ --sp_frac 0.5

```

Workflow underneath

  1. Remove species that contain only "N"s.
  2. Run muscle alignment with 5 iterations.
  3. Refine alignment using MACSE.
  4. Replace frameshift(!) and stop codon with NNN using MACSE.
  5. Concatenate files (if in multi-file mode).
  6. Remove codon columns with more than 50% species missed, and remove species with more than 50% codons as "NNN" or "---".
  7. Build tree with raxml -f a -x 42 -p 42 -m GTRGAMMA.
  8. Co-filter fasta file and tree file. Trim and annotate tree with the foreground information provided. Output alignment as phylip format.
  9. Generate codeml configuration files for both branch-site null model (omega=1) and alternative model.
  10. Run both codeml model.
  11. Generate p values and other statistics using scipy.

Owner

  • Login: chenyangkang
  • Kind: user

GitHub Events

Total
  • Watch event: 1
  • Push event: 1
Last Year
  • Watch event: 1
  • Push event: 1

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 26
  • Total Committers: 2
  • Avg Commits per committer: 13.0
  • Development Distribution Score (DDS): 0.346
Past Year
  • Commits: 26
  • Committers: 2
  • Avg Commits per committer: 13.0
  • Development Distribution Score (DDS): 0.346
Top Committers
Name Email Commits
chenyangkang 5****g 17
chenyangkang c****4@o****m 9

Issues and Pull Requests

Last synced: 10 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels