https://github.com/choderalab/ensembler

Automated omics-scale protein modeling and simulation setup.

https://github.com/choderalab/ensembler

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.7%) to scientific vocabulary

Keywords

homology-modeling modeller molecular-dynamics-simulation python superfamily
Last synced: 6 months ago · JSON representation

Repository

Automated omics-scale protein modeling and simulation setup.

Basic Info
Statistics
  • Stars: 52
  • Watchers: 22
  • Forks: 21
  • Open Issues: 41
  • Releases: 0
Topics
homology-modeling modeller molecular-dynamics-simulation python superfamily
Created about 12 years ago · Last pushed over 4 years ago
Metadata Files
Readme License

README.md

Ensembler

Anaconda Cloud Documentation Status Build Status

Software pipeline for automating omics-scale protein modeling and simulation setup.

Online documentation

Authors

  • Daniel L. Parton | daniel.parton@choderalab.org
  • John D. Chodera | john.chodera@choderalab.org
  • Patrick B. Grinaway | patrick.grinaway@choderalab.org

Overview of pipeline

  1. Retrieve protein target sequences and template structures.
  2. Build models by mapping each target sequence onto every available template structure, using Modeller.
  3. Filter out non-unique models (based on a RMSD cutoff).
  4. Refine models with implicit solvent molecular dynamics simulation.
  5. Refine models with explicit solvent molecular dynamics simulation.
  6. (optional) Package and/or compress the final models, ready for transfer or for set-up on other platforms such as Folding@Home.

Installation

First go to the Modeller website and get a license key (registration required; free for academic non-profit institutions).

Save the key as an environment variable:

bash export KEY_MODELLER=XXX Then, using conda (installs all dependencies except the optional dependency Rosetta): bash conda config --add channels omnia conda config --add channels salilab conda install ensembler From source: bash git clone https://github.com/choderalab/ensembler.git cd ensembler python setup.py install

Dependencies

  • OpenMM - https://simtk.org/home/openmm
  • Modeller - http://salilab.org/modeller/
  • mdtraj - http://mdtraj.org/
  • MSMBuilder - http://msmbuilder.org/
  • PDBFixer - https://github.com/pandegroup/pdbfixer
  • BioPython
  • NumPy
  • lxml
  • PyYAML
  • docopt
  • mock
  • Optional:
    • Rosetta (optional, for template loop reconstruction) - https://www.rosettacommons.org/software
    • MPI4Py (allows many Ensembler functions to be run in parallel using MPI)
    • Pandas (required for certain analysis functions)
    • subprocess32 (if using Python 2)
    • PyMOL (optional, for model alignment/visualization) - http://www.pymol.org/

Recommended approach is to install using conda (https://store.continuum.io/cshop/anaconda/). This will install all dependencies except for the optional dependency Rosetta, which must be installed separately by the user.

Owner

  • Name: Chodera lab // Memorial Sloan Kettering Cancer Center
  • Login: choderalab
  • Kind: organization
  • Email: john.chodera@choderalab.org
  • Location: Memorial Sloan-Kettering Cancer Center, Manhattan, NY

GitHub Events

Total
  • Watch event: 2
Last Year
  • Watch event: 2